首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
力学   9篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2006年   1篇
  2003年   1篇
  1999年   2篇
  1993年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Guo  J.  Dadashi  S.  Bender  M.  Paruchuri  S. T.  Powell  N.  Sharma  Y.  Kurdila  H.  McGlothlin  J. W.  Kurdila  A. J. 《Nonlinear dynamics》2019,98(1):195-213
Nonlinear Dynamics - In contrast to many systems studied in the field of classical mechanics, models of animal motion are often distinguished in that they are both highly uncertain and evolve in a...  相似文献   
2.
This paper presents stability and convergence results on a novel approach for imposing holonomic constraints for a class of multibody system dynamics. As opposed to some recent techniques that employ a penalty functional to approximate the Lagrange multipliers, the method herein defines a penalized dynamical system using penalty-augmented kinetic and potential energies, as well as a penalty dependent constraint violation dissipation function. In as much as the governing equations are not typically cocreive, the usual convergence criteria for linear variational boundary value problems are not directly applicable. Still numerical simulations by various researchers suggest that the method is convergent and stable. Despite the fact that the governing equations are nonlinear, the theoretical convergence of the formulation is guaranteed if the multibody system is natural and conservative. Likewise, stability and asymptotic stability results for the penalty formulation are derived from well-known stability results available from classical mechanics. Unfortunately, the convergence theorem is not directly applicable to dissipative multibody systems, such as those encountered in control applications. However, it is shown that the approximate solutions of a typical dissipative system converge to a nearby collection of trajectories that can be characterized precisely using a Lyapunov/Invariance Principle analysis. In short, the approach has many advantages as an alternative to other computational techniques:
(1)  Explicit constraint violation bounds can be derived for a large class of nonlinear multibody dynamics problems
(2)  Sufficient conditions for the Lyapunov stability, and asymptotic stability, of the penalty formulation are derived for a large class of multibody systems
(3)  The method can be shown to be relatively insensitive to singular configurations by selecting the penalty parameters to dissipate constraint violation energy
(4)  The Invariance Principle can be employed in the method, in certain cases, to derive the asymptotic behavior of the constraint violation for dissipative multibody systems by identifying constraint violation limit cycles
Just as importantly, these results for nonlinear systems can be sharpened considerably for linear systems:
(5)  Explicit spectral error estimates can be obtained for substructure synthesis
(6)  The penalty equations can be shown to be optimal in the sense that the terms represent feedback that minimizes a measure of the constraint violation
  相似文献   
3.
Multiwavelet Constructions and Volterra Kernel Identification   总被引:2,自引:0,他引:2  
The Volterra series is commonly used for the modeling of nonlinear dynamical systems. In general, however, a large number of terms are needed to represent Volterra kernels, with the number of required terms increasing exponentially with the order of the kernel. Therefore, reduced-order kernel representations are needed in order to employ the Volterra series in engineering practice. This paper presents an approach whereby multiwavelets are used to obtain low-order estimates of first-, second-, and third-order Volterra kernels. A family of multiwavelets is constructed from the classical finite element basis functions using the technique of intertwining. The resulting multiwavelets are piecewise-polynomial, orthonormal, compactly-supported, and can be constructed with arbitrary approximation order. Furthermore, these multiwavelets are easily adapted to the domains of support of the Volterra kernels. In contrast, most wavelet families do not possess this characteristic. Higher-dimensional multiwavelets can easily be constructed by taking tensor products of the original one-dimensional functions. Therefore, it is straightforward to extend this approach to the representation of higher-order Volterra kernels. This kernel identification algorithm is demonstrated on a prototypical oscillator with a quadratic stiffness nonlinearity. For this system, it is shown that accurate kernel estimates can be obtained in terms of a relatively small number of wavelet coefficients. These results indicate the potential of the multiwavelet-based algorithm for obtaining reduced-order models for a large class of weakly nonlinear systems.  相似文献   
4.
Although the study of internal resonance in mechanical systems has been given significant consideration, minimal attention has been given to internal resonance for systems which consider the presence of aerodynamic forces. Herein, the investigators examine the possible existence of internal resonances, and the related nonlinear pathologies that such responses may have, for an aeroelastic system which possesses nonlinear aerodynamic loads. Evidence of internal resonance is presented for specific classes of aeroelastic systems, and such adverse response indicates nonlinearities may lead to aeroelastic instabilities that are not predicted by traditional (linear) approaches.  相似文献   
5.
Paruchuri  Sai Tej  Guo  Jia  Kurdila  Andrew 《Nonlinear dynamics》2020,101(2):1397-1415
Nonlinear Dynamics - Nonlinearities in piezoelectric systems can arise from internal factors such as nonlinear constitutive laws or external factors like realizations of boundary conditions. It can...  相似文献   
6.
Kurdila  A.  Fitz-Coy  N.  McDaniel  D.  Webb  G. 《Nonlinear dynamics》1999,20(1):55-84
It is well known that when equations of motion are formulated using Lagrange multipliers for multibody dynamic systems, one obtains a redundant set of differential algebraic equations. Numerical integration of these equations can lead to numerical difficulties associated with constraint violation drift. One approach that has been explored to alleviate this difficulty has been contraint stabilization methods. In this paper, a family of stabilization methods are considered as partial feedback linearizing controllers. Several stabilization methods including the range space method, null space method, Baumgarte's method, and the damping and stiffness penalty methods are examined. Each can be construed as a particular partial feedback linearizing controller. The paper closes by comparing several of these constraint stabilization methods to another method suggested by construction: the variable structure sliding (VSS) control. The VSS method is found to be the most efficient, stable, and robust in the presence of singularities.  相似文献   
7.
Dadashi  Shirin  Bobade  Parag  Kurdila  Andrew J. 《Nonlinear dynamics》2018,92(3):1431-1451
Nonlinear Dynamics - This paper presents sufficient conditions for the convergence of online estimation methods and the stability of adaptive control strategies for a class of history-dependent,...  相似文献   
8.
Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号