首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
力学   4篇
物理学   1篇
  2019年   1篇
  2012年   2篇
  2011年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Bruzy  N.  Coret  M.  Huneau  B.  Kermouche  G.  Mondon  M.  Bertrand  E.  Stainier  L. 《Experimental Mechanics》2019,59(8):1145-1157

The allotropic phase change from ferrite to austenite represents a moment of massive interplay between the microstructural and mechanical states of iron. The difference of compacity between the two phases induces a microplastic accommodation in the material at grain scale. However, mechanical heterogeneities resulting from the transformation process remain challenging to characterise due to the high temperature conditions it is associated with. We developed experimental equipment for in situ observation of α ? γ and γ ? α transformations. Images of the surface of an iron sample taken by an optical camera were used as input for a Digital Image Correlation (DIC) routine. Special care was taken to maximize image resolution to capture sub-grain phenomena. Observations show that, at the mesoscopic scale, shear strain fields exhibit strong localisations that are evidence of transformations that are occurring.

  相似文献   
2.
The Mechanical Response of a Model Silica Glass is studied extensively at the submicrometer scale, with the help of atomistic simulations. The analysis of the response to a hydrostatic compression is compared to recent experimental results. The irreversible behaviour and the variation of intertetrahedral angles is recovered. It is shown that the atomistic response is homogeneous upon compression, in opposition with the localization along shear bands occuring during shear deformation with constant volume. Moreover, the Bulk Modulus anomaly is interpreted as due to a succession of such homogeneous but irreversible atomic rearrangements.  相似文献   
3.
The model developed in this Note makes it possible to determine the value of the mean indentation pressure usually named hardness from the elastoplastic properties of materials and also the shape of the cone or that of the wedge. The approximation rests upon the definition of a linear elastic solid which has the same indentation pressure as the material actually indented. Cases of cone and wedge indentation are studied. A method to determine the uniaxial stress–strain curve of materials from indentation tests is given. The results are validated using finite element simulations. To cite this article: G. Kermouche et al., C. R. Mecanique 333 (2005).  相似文献   
4.
Guillonneau  G.  Kermouche  G.  Bec  S.  Loubet  J.-L. 《Experimental Mechanics》2012,52(7):933-944
In this article, a new method based on the detection of the second harmonic of the displacement signal to determine mechanical properties of materials from dynamic nanoindentation testing, is presented. With this technique, the Young’s modulus and hardness of homogeneous materials can be obtained at small penetration depths from the measurement of the second harmonic amplitude. With this innovative method, the measurement of the normal displacement is indirectly used, avoiding the need for very precise contact detection. Moreover, the influence of the tip defect and thermal drift on the measurements are reduced. This method was used for dynamic nanoindentation tests performed on fused silica and on an amorphous polymer (PMMA) because these materials are supposed not to exhibit an indentation size effect at small penetration depths. The amplitude of the second harmonic of the displacement signal was correctly measured at small depths, allowing to calculate the Young’s modulus and the hardness of the tested materials. The mechanical properties calculated with this method are in good agreement with values obtained from classical nanoindentation tests.  相似文献   
5.
Under repeated impact loadings – shot peening process, surface mechanical attrition treatment, erosive wear – metallic surfaces undergo severe plastic deformation which leads sometimes to a local change of their microstructure. These mechanically attrited structures (MAS) exhibit very interesting physical properties: high hardness, better tribological properties, etc. Consequently it is of primary importance to understand the mechanism explaining how these MAS are created and grow under such loadings. In this article, this mechanism is investigated with the help of a coupled experimental and finite element approach. First, the MAS are generated on an AISI1045 steel with a micro-impact tester which allows to know the impact energy and the location of impacts with a very good accuracy. The evolution of the MAS shape as a function of the impact number is presented. Then, the finite element investigation is presented. It is shown that a macroscopic stabilized elastic regime is reached after one hundred impacts. It also appears that a close cycle of plastic strain is observed locally in the zone where material transformation should happen during this regime. The severe plastic deformation achieved after a given number of cycles may thus explain the material transformation. Based on these results, we propose a mechanism based on a plastic strain threshold to explain the growth of the MAS. The resulting MAS size and shape appear to be in very good agreement with the experimental results. Finally, we conclude on the influence of the mechanical parameters that are involved in the proposed mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号