首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
化学   2篇
力学   1篇
物理学   2篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A novel method of fabricating composite mosaic membranes was studied on the basis of interracial polymerization (IP) by coating a thin selective layer onto the surface of a micro-porous hollow-fiber membrane, in which, 2,5-diaminobenzene sulfonic acid was used as one monomer of the IP reaction, and a mixture of trimesoyl chloride (TMCI) and 4-(chloromethyl) benzoyl chloride as the other monomer. Through the IP reaction a thin selective layer with negatively charged groups could be first formed on the polyethersulfone (PES) support membrane. Then trimethylamine solution was introduced to modify the IP layer through a quaternization reaction. Thus the selective layer of this composite membrane contained both negatively charged and positively charged groups to perform the mosaic functionality. Characterization of the composite mosaic membranes was carried out through permeation experiments using different inorganic salts and dyes. The experimental results showed that the membranes could permeate both mono- and bi-valent inorganic salts, but reject larger organic molecules. Such a mosaic membrane is potentially useful for the separation of salts from water-soluble organics, especially in dye and textile industries.  相似文献   
2.
界面聚合制备新型荷正电纳滤膜   总被引:4,自引:0,他引:4  
张浩勤  刘金盾 《化学通报》2005,68(4):301-303
以聚砜超滤膜为基膜,聚乙烯亚胺、均苯三甲酰氯为界面聚合单体,水和正己烷分别为两相溶剂,通过界面聚合方法制备荷正电纳滤膜。实验着重考察了Na2SO4-PEG400-H2O三元混合体系的分离情况,结果表明,该膜可有效地实现低分子量有机物与Na2SO4的分离;另外,随着Na2SO4或PEG400浓度的增大,膜对Na2SO4和PEG400的截留率有所降低。  相似文献   
3.
田苗苗  李雪梅  殷勇  何涛  刘金盾 《化学进展》2015,27(8):1033-1041
超疏水材料具有超高的憎水性和自清洁特性,因而在解决材料的润湿和污染方面具有广泛的应用前景。膜蒸馏是一种以多孔疏水膜两侧蒸汽压差为推动力的膜分离过程,是脱盐和水回用中的重要技术。然而膜润湿和污染问题是导致膜蒸馏过程出水品质下降和应用过程稳定性差的关键。本文以膜蒸馏过程为背景,系统介绍了蒸馏过程的发展状况和超疏水膜材料的制备方法,以及超疏水膜在膜蒸馏中的应用,探讨了超疏水膜材料在膜蒸馏过程中的优势,同时指出了其不足和可能的解决方法,以期为膜蒸馏材料的发展提供研究方向和思路。  相似文献   
4.
To granulate halloysite nanotubes (HNTs) into large-size particles, interfacial polymerization and condensation polymerization were combined. The former was used to form surface layer of particles and the latter was used to improve particle strength. Polyethylenimine (PEI) and terephthaloyl chloride were chosen, respectively as hydrophilic monomer and hydrophobic monomer in interfacial polymerization. Condensation polymerization was carried out between PEI and glycerol polyglycidyl ether (GPE). The results show that HNTs particles have sphere shape and its diameters range from 1.7 to 2.5 mm and vary with preparation condition. SEM images show that particles have typical core–shell structure with dense surface layer and porous inner structure and single nanotube is completely encapsulated by polymer material. The characterization of BET shows that because of dense surface layer and encapsulation of nanotubes, the specific surface area of particles determined decreases dramatically.  相似文献   
5.
Polyacrylamide (PAM) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surface by surface-initiated atom transfer radical polymerization (SI-ATRP) to improve the membrane's hydrophilic property. In order to anchor the initiator onto polysulfone (PSF) membrane surface, CMPSF was used to prepare the microporous membrane by phase-inversion process. Attachment of the PAM chains on membrane surface was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The grafted density of PAM was calculated to be 0.08 chains nm−2. Field emission scanning electron microscopy (FESEM) and atomic force microscope (AFM) were used to characterize the surface morphology of the CMPSF membrane and modified membrane. The number-average molecular weight (Mn) of PAM linearly increased with the polymerization time, while the static water contact angle (θ) of the membrane grafted with PAM linearly decreased. This indicated the hydrophilic property of the membrane was linearly correlated with the chain length of graft polymer. Therefore linear control of PSF membrane's hydrophilic property was realized through adjusting polymerization time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号