首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   4篇
力学   6篇
数学   7篇
物理学   4篇
  2020年   1篇
  2013年   1篇
  1997年   1篇
  1989年   1篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1971年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
It was derived theoretically that a sharp end-point of this spectrophotometrical titration is defined, in order of importance, by: 1. *KC ? *KI (numerically speaking, log*KC*KI should be at least 4); 2. *KI being large (numerically e.g. 104-105); this is already reached by choosing a high pH; 3. it being low; 4. mt being as high as possible.  相似文献   
2.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   
3.
Experimental data and correlations available in the literature for the liquid holdup εL and the pressure gradient ΔPTP/L for gas-liquid pipe flow, generally, do not cover the domain 0 < εL < 0.06. Reliable pressure-drop correlations for this holdup range are important for calculating flow rates of natural gas, containing traces of condensate. In the present paper attention is focused on reliable measurements of εL and ΔPTPIL values and on the development of a phenomenological model for the liquid-holdup range 0 < εL < 0.06. This model is called the “apparent rough surface” model and is referred to as the ARS model. The experimental results presented in this paper refer to air-water and air-water + ethyleneglycol systems with varying transport properties in horizontal straight smooth glass tubes under steady-state conditions. The holdup and pressure gradient values predicted with the ARS model agree satisfactorily with both our experimental results and data obtained from the literature referring to small liquid-holdup values 0 < εL < 0.06. Further, it has been shown that in the domain 38 < < 72 mPa m the interfacial tension of the gas-liquid system has no significant effect on the liquid holdup. The pressure gradient, however, increases slightly with decreasing surface tension values.  相似文献   
4.
C.M. Fortuin 《Physica A》1977,86(2):224-256
A theory is proposed for the explanation of the structural modulation of the ground state of Na2CO3. The modulation phase is seen as a generalisation of the concept of (anti) ferroelectric and ferroelastic phases out of the centre of the Brillouinzone. The instability of the structure is caused by the dipolar interactions, and is driven by the linear polarizability. It is shown that the nonlinearity in the polarizability alone, via the harmonic forces, stabilizes the system, and the Landau-free energy of the well-known form is derived.  相似文献   
5.
A method is developed for calculating the end-point and the ionization constant in a potentiometric titration. The influence of dilution is studied. The method is compared with the procedure of KOLTHOFF and that of HAHN.  相似文献   
6.
7.
The expected demand for service parts is easy to calculate, as long as their failure rate is constant. Certain service parts, however, have a failure rate that is time-dependent. If their failure times have a Weibull distribution, the simple calculation methods brake down and much computational effort is required to determine the expected demand exactly. This paper presents a simple approximation of the expected demand that compares well with exact answers.  相似文献   
8.
9.
C.M. Fortuin 《Physica A》1980,100(2):307-334
A microscopic foundation of the theory of static isothermal homogeneous deformation is given for classical (ionic) crystals which may have atomic electric dipoles and which may be in a structurally modulated (slightly distorted) phase. Special effects due to the dipoles and the modulations are mentioned and a comparison is made with the dynamic elasticity as measured via acoustic waves. An attempt is made to predict the limits of the elastic regime i.e. yielding under stresses and melting under heating.  相似文献   
10.
Summary At higher shear rates the relation between shear stress and shear rate appears to deviate from the for Newtonian fluids expected linear behaviour. In cone-and-plate rheogoniometry one of the most important causes of that is the effect of viscous heating. Accurate measurements carried out with a 10 cm diameter cone and plate lead to a semi-logarithmic, linear relationship between temperature increase and time for a Newtonian oil which dynamic viscosity varies approximately linearly with time. A simple model based on a heat balance describes this behaviour quantitatively.
Zusammenfassung Bei newtonschen Flüssigkeiten weisen die Experimente eine Abweichung vom linearen Zusammenhang zwischen Schubspannung und Schergeschwindigkeit auf. Im Kegel-Platte-Meßsystem ist die Wärmeproduktion durch innere Reibung die wichtigste Ursache der Abweichung. Bei newtonschen Flüssigkeiten, deren dynamische Viskosität sich ungefähr linear mit der Temperatur verändert, ergeben sorgfältig ausgeführte Messungen mit einem Kegel von 10 cm Durchmesser einen linearen Zusammenhang zwischen der Zeit und dem Logarithmus der Temperaturzunahme. Ein aus der Wärmebilanz abgeleitetes Modell vermag dieses Verhalten quantitativ zu beschreiben.

Symbols A platen surface (m2) - B viscosity constant from eq. [1] (Pa s K–1) - S B standard deviation ofB (Pa s K–1) - S t0 standard deviation oft 0 (s) - S t0 standard deviation oft 0 (s) - S 0 standard deviation of 0 (Pa s) - t time (s) - t 0 time def. by eq. [5] (s) - t 0 time def. by eq. [11] (s) - T temperature (°C) - T 0 temperature of the surrounding air (°C) - T highest experimental temperature (°C) - V volume of the fluid between the platen (m3) - W heat capacity of the system (J K–1) - heat transfer coefficient (W m–2 K–1) - shear rate (s–1) - dynamic viscosity (Pa s) - 0 dynamic viscosity atT 0 (Pa s) - dimensionless temperature def. by eq. [4a] (–) - dimensionless time def. by eq. [4b] (–) - dimensionless time def. by eq. [10] (–) With 4 figures and 2 tables  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号