首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   5篇
力学   14篇
物理学   2篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The quintessential form of cellulose in wood consists of microfibrils that have high aspect ratio crystalline domains embedded within an amorphous cellulose domain. In this study, we apply united-atom molecular dynamics simulations to quantify changes in different morphologies of cellulose. We compare the structure of crystalline cellulose with paracrystalline and amorphous phases that are both obtained by high temperature equilibration followed by quenching at room temperature. Our study reveals that the paracrystalline phase may be an intermediate, kinetically arrested phase formed upon amorphisation of crystalline cellulose. The quenched structures yield isotropic amorphous polymer domains consistent with experimental results, thereby validating a new computational protocol for achieving amorphous cellulose structure. The non-crystalline cellulose compared to crystalline structure is characterized by a dramatic decrease in elastic modulus, thermal expansion coefficient, bond energies, and number of hydrogen bonds. Analysis of the lattice parameters shows that Iβ cellulose undergoes a phase transition into high-temperature phase in the range of 450–550 K. The mechanisms of the phase transition elucidated here present an atomistic view of the temperature dependent dynamic structure and mechanical properties of cellulose. The paracrystalline state of cellulose exhibits intermediate mechanical properties, between crystalline and amorphous phases, that can be assigned to the physical properties of the interphase regions between crystalline and amorphous cellulose in wood microfibrils. Our results suggest an atomistic structural view of amorphous cellulose which is consistent with experimental data available up to date and provide a basis for future multi-scale models for wood microfibrils and all-cellulose nanocomposites.  相似文献   
2.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three‐dimensional curved surfaces is achieved with a strategy that combines template‐induced hydrodynamic printing and self‐assembly of nanoparticles (NPs). Non‐lithography flexible wall‐shaped templates are replicated with microscale features by dicing a trench‐shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self‐assemble into close‐packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non‐interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single‐NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   
3.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three-dimensional curved surfaces is achieved with a strategy that combines template-induced hydrodynamic printing and self-assembly of nanoparticles (NPs). Non-lithography flexible wall-shaped templates are replicated with microscale features by dicing a trench-shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self-assemble into close-packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non-interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single-NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   
4.
Modelling Unsaturated Moisture Transport in Heterogeneous Limestone   总被引:1,自引:0,他引:1  
Roels  Staf  Carmeliet  Jan  Hens  Hugo 《Transport in Porous Media》2003,52(3):333-350
The influence of macro-scale heterogeneities on the imbibition process is investigated for Savonnières, a French layered limestone. Free uptake experiments are performed both parallel and perpendicular to the bedding. It is found that the position of the different layers, and the exact material properties inside each layer can significantly influence the imbibition process. The experimental results are compared with numerical simulations. For the flow simulations, moisture permeability of the different layers is obtained with the upscaling technique presented in Part 1. Good agreement between simulations and experiments validate the proposed upscaling from meso to macroscopic scale.  相似文献   
5.
A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is based on the concept of examining the porous space at different levels of magnification. The conservation of the water vapour permeability of dry material is used as scaling criterion to link the different pore scales. A macroscopic permeability is deduced from the permeabilities calculated at the different levels of magnification. Each level of magnification is modelled using an isotropic nonplanar 2D cross-squared network. The multiscale network simulates the enhancement of water vapour permeability due to capillary condensation, the hysteresis phenomenon between wetting and drying, and the steep increase of moisture permeability at the critical moisture saturation level. The calculated network permeabilities are compared with experimental data for calcium silicate and ceramic brick and a good agreement is observed.  相似文献   
6.
A new methodology for restraining the swelling of spruce wood samples in the micrometre range is developed and presented. We show that the restraining device successfully prevents the free swelling of wood during moisture adsorption, thus modifying significantly the anisotropy of swelling and provoking the intended collapse and large deformations of the wood cells at the edges of the sample in contact with the restraining device. The device consists in a slotted cube designed to restrain swelling and is made of PMMA manufactured by laser ablation. The sample undergoing the restraining experiment is imaged with high-resolution synchrotron radiation phase contrast X-Ray Tomographic Microscopy. The deformation of the restraining device itself is only approximately 2 μm with respect to a 500 μm width in cubes containing latewood samples and half of that in the case of cubes containing earlywood.  相似文献   
7.
8.
A macroscopic framework to model heat transfer in materials and composites, subjected to physical degradation, is proposed. The framework employs the partition of unity concept and captures the change from conduction-dominated transfer in the initial continuum state to convection and radiation-dominated transfer in the damaged state. The underlying model can be directly linked to a mechanical cohesive zone model, governing the initiation and subsequent growth and coalescence of micro-cracks. The methodology proved to be applicable for quasi-static, periodic, and transient problems.  相似文献   
9.
The article addresses the transport of moisture due to high-temperature gradients resulting from heating by means of thermal neutron radiography. Moisture migration due to heating is quantified along the orthotropic directions of two wood species, spruce and beech, with high spatial and moisture content resolution. As the heat wave is propagating into the wood, the moisture content in the heated zone rapidly decreases, and moisture is transported due to the high-temperature gradient ahead of the heated zone, resulting in a zone with higher moisture content. Both the drying and the moisture accumulation areas evolve non-uniformly, depending on wood microstructure and orientation.  相似文献   
10.
Wall jets are important for a wide variety of engineering applications, including ventilation of confined spaces and cooling and drying processes. Although a lot of experimental studies have been devoted to wall jets, many of these have focused on laminar or turbulent wall jets. There is a lack of experimental data on transitional wall jets, especially transitional wall jets released into a confined space or enclosure. This paper presents flow visualizations and high-resolution Particle Image Velocimetry measurements of isothermal transitional plane wall jets injected through a rectangular slot in a confined space. As opposed to many previous studies, not only the wall jet region but also the recirculation region in the remainder of the enclosure is analyzed. The data and analysis in this paper provide new insights into the behavior of transitional plane wall jets in a confined space and will be useful for the validation of numerical simulations of this type of jets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号