首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
力学   1篇
物理学   4篇
  2020年   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
A transition between energy levels at an avoided crossing is known as a Landau–Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stückelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau–Zener–Stückelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.  相似文献   
2.
Motivated by the presence of a lattice of rotating molecular dipoles in the high temperature phase of methylammonium lead iodide, we investigate the ground state of a simple cubic lattice of dipoles interacting with each other via the dipole-dipole interaction and with an external field via the standard, linear dipole-field interaction. In the absence of an external field, the ground state is infinitely degenerate, and all the configurations in the ground state manifold are periodic along the three lattice axes with a period of two lattice sites. Using a 1000-dipole lattice as a unit cell in numerical simulations of an infinite simple cubic lattice, we determine the ground state dipole configurations in the presence of an external field. We then analyze the polarization, dipole orientation statistics and correlations in these configurations. Our calculations show that for some special directions of the external field the two-site periodicity in the dipole configurations is preserved, while in the general case this periodicity is lost and complex dipole configurations form under the influence of the external field. More specifically, for a general field direction, a sudden transition from two-site-periodic configurations to irregular configurations occurs at a finite value of the applied field strength.  相似文献   
3.
The populations of energy levels of interacting qubits have been studied as functions of the field amplitude and other control parameters for a constant frequency of the external electromagnetic field. It has been found that the qubit coupling constant strongly affects the quantum-coherent Landau-Zener transitions between the qubit states and the formation of an interference pattern in level populations, depending on the field parameters. It has been demonstrated that it is possible to determine the qubit coupling constant by Landau-Zener interferometry.  相似文献   
4.
We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.  相似文献   
5.
Ashhab  M.  Salapaka  M. V.  Dahleh  M.  Mezić  I. 《Nonlinear dynamics》1999,20(3):197-220
We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.  相似文献   
6.
The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoherence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson junction can be considered as a multiqubit register. It can be coupled to other junctions to allow the application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative way to realize superconducting quantum information processing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号