首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   30篇
数学   2篇
物理学   3篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2003年   2篇
  2002年   2篇
  1993年   2篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 46 毫秒
1.
Nitrite anions are easily condensed with aryl halides in the presence of the Complex Base NaNH2-CH3CH2(OCH2CH2)2ONa via the intermediate arynes.  相似文献   
2.
In the title compound, catena‐poly[bis[(2,2′‐bipyridine‐κ2N,N′)(1,1,3,3‐tetracyano‐2‐ethoxypropenido‐κN)copper(II)]‐μ4‐hexanedioato‐κ6O1,O1′:O1:O6,O6′:O6], [Cu2(C9H5N4O)2(C6H8O4)(C10H8N2)2]n, the adipate (hexanedioate) dianion lies across a centre of inversion in the space group P. The CuII centre adopts a distorted form of axially elongated (4+2) coordination, and the CuII and adipate components form a one‐dimensional coordination polymer from which the 2,2′‐bipyridine and 1,1,3,3‐tetracyano‐2‐ethoxypropenide components are pendent, and where each adipate dianion is bonded to four different CuII centres. The coordination polymer chains are linked into a three‐dimensional framework structure by a combination of C—H...N and C—H...O hydrogen bonds, augmented by a π–π stacking interaction.  相似文献   
3.
In this article, a mathematical model was developed to describe and optimize the configuration of the urea biosensor. The biosensor is based on interdigitated gold microelectrodes modified with a urease enzyme membrane. The model presented here focuses on the enzymatic reaction and/or diffusion phenomena that occur in the enzyme membrane and in the diffusion layer. Numerical resolution of differential equations was performed using the finite difference technique. The mathematical model was validated using experimental biosensor data. The responses of the biosensor to various conditions were simulated to guide experiments, improve analytical performance, and reduce development costs.  相似文献   
4.
In this work we report an easy and efficient way to fabricate nanostructured cobalt oxide (Co3O4) thin films as a non-enzymatic sensor for H2O2 detection. Co3O4 thin films were grown on ITO glass substrates via the sol-gel method and characterized with several techniques including X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and optical absorbance. The Co3O4 thin films’ performance regarding hydrogen peroxide detection was studied in a 0.1 M NaOH solution using two techniques, cyclic voltammetry (CV) and amperometry. The films exhibited a high sensitivity of 1450 μA.mM−1.cm−2, a wide linear range from 0.05 μM to 1.1 mM, and a very low detection limit of 18 nM. Likewise, the Co3O4 thin films produced showed an exceptional stability and a high selectivity.  相似文献   
5.
The massive and careless use of glyphosate (GLY) in agricultural production raises many questions regarding environmental pollution and health risks, it is then important to develop simple methods to detect it. Electrochemical impedance spectroscopy (EIS) is an effective analytical tool for characterizing properties at the electrode/electrolyte interface. It is useful as an analytical procedure, but it can also help in the interpretation of the involved fundamental electrochemical and electronic processes. In this study, the impedance data obtained experimentally for a microsensor based on molecularly imprinted chitosan graft on 4-aminophenylacetic acid for the detection of glyphosate was analyzed using an exact mathematical model based on physical theories. The procedure for modeling experimental responses is well explained. The analysis of the observed impedance response leads to estimations of the microscopic parameters linked to the faradic and capacitive current. The interaction of glyphosate molecules with the imprinted sites of the CS-MIPs film is observed in the high frequency range. The relative variation of the charge transfer resistance is proportional to the log of the concentration of glyphosate. The capacitance decreases as the concentration of glyphosate increases, which is explained by the discharging of the charged imprinted sites when the glyphosate molecule interacts with the imprinted sites through electrostatic interactions. The phenomenon of adsorption of the ions in the CMA film is observed in the low frequency range, this phenomenon being balanced by the electrostatic interaction of glyphosate with the imprinted sites in the CS-MIPs film.  相似文献   
6.
The effect of nano-size Zn0.95Mn0.05O and ZnO (30 nm) addition on the microstructure and the normal state transport properties of polycrystalline YBa2Cu3Oy (YBCO) was systematically studied. Samples were synthesized in air using a standard solid state reaction technique by adding nano-sized particles up to 10 wt.%. When Zn0.95Mn0.05O and ZnO are added to the YBCO the orthorhombic structure maintained even at the highest concentration. TEM and EDS analyses show the presence of inhomeginities embedded in the superconducting matrix. To interpret the normal state properties of the samples, the percolation theory based on localized states is applied. A cross-over between variable-range hopping and Coulomb gap mechanisms is observed as a result of increasing the nano-particles concentration. The ZnO addition modifies the electrical behavior of samples from metallic to insulating with a much lower concentration comparatively to Zn0.95Mn0.05O addition. The calculated values of the localization length, d, are greater in the case of Zn0.95Mn0.05O addition. This result can be interpreted by the internal structure defects.  相似文献   
7.
8.
Reactions of CuCl2 with different CN complexes in presence of a neutral ancillary ligand lead to two novel mixed-valence Cu complexes [CuII(bpy)CuI(CN)3]n, 1 (bpy = 2,2′-bipyridine) and {[CuII(tn)2][CuI4(CN)6]}n2 (tn = 1,3-diaminopropane). For compound 1, the asymmetric unit involves two Cu ions Cu1 and Cu2 (CuI and CuII centres, respectively) which strongly differ in their environments. The Cu1 ion presents a CuC4 pseudo-tetrahedral geometry, while the Cu2 ion presents a CuN5 slightly distorted square-pyramidal geometry. The extended structure of 1 is generated by three cyano ligands which differ in their coordination modes. One CN group has a μ3 coordination mode and bridges two CuI and one CuII ion, while the two other CN groups act as μ2 bridges leading to a sophisticated 3-D structure. As for 1, the asymmetric unit of 2 involves three crystallographically different Cu ions (Cu1A and Cu1B, presumably CuI centres, and Cu2 presumably CuII centres). The Cu2 ion presents centrosymmetric CuN4 coordination environments involving four nitrogen atoms from two bidentate tn ligands; while the Cu1A and Cu1B ions are three coordinated to cyano groups. The structure can be described as formed by 18-membered “[CuI(CN)]6” planar metallocycles that are connected to their six neighbors to generate 2-D sheets; these sheets stack forming infinite hexagonal channels in which the [Cu(tn)2]2+ units are located. Magnetic measurements show an unexpected weak ferromagnetic coupling (θ = 0.239(1) K) of the CuII ions through the long and “a priori diamagnetic” –NC–CuI–CN– bridges in compound 1 and an essentially paramagnetic behavior in compound 2.  相似文献   
9.
We have studied the effects of superconducting grain boundary disorder on the normal state transport properties of cuprate films. Dip-coated granular YBa2Cu3O7−y (YBaCuO) thick films on polycrystalline MgO substrates were synthesized and networked grains were systematically made less disordered in order to probe the crossover from strong to weak inter-grain disorder. Grain boundary passivation was achieved by metallic inclusions of different forms. We have shown that the normal state of samples exhibit a semiconducting behavior and changes to ‘metallic’ with sharper transitions to the superconducting state as we reduce grain-interfaces disorder, i.e. increase metallic inclusion content. On the basis of electron localization mechanisms, the normal state conductivity is thus shown to undergo a dimensional crossover from 3D to 2D in the frame of the variable-range hopping (VRH) regime. The transition threshold was found to depend on the form of metallic inclusions.  相似文献   
10.

Oxyfuel combustion represents one way for cleaner energy production using coal as combustible. The comparison between the oxycombustion and the conventional air combustion process starts with the investigation of the pyrolysis step. The aim of this contribution is to evaluate the impact of N2 (for conventional air combustion) and CO2 (for oxy-fuel combustion) atmospheres during pyrolysis of three different coals. The experiments are conducted in a drop tube furnace over a wide temperature range 800–1400 °C and for residence time ranging between 0.2 and 1.2 s. Coal devolatilized in N2 and CO2 atmospheres at low temperatures (?1200 °C) and longer residence times (>?0.5 s), the char-CO2 reaction is clearly observed, whose intensity depends on the nature of the coal. Furthermore, the volatile yields are simulated using Kobayashi’s scheme and kinetic parameters are predicted for each coal. The char gasification under CO2 is also accounted for by the model.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号