首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学   26篇
  2019年   1篇
  2016年   1篇
  2013年   2篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  1996年   1篇
  1927年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
The kinetic method is a widely used approach for the determination of thermochemical data such as proton affinities (PA) and gas-phase acidities (ΔH° acid ). These data are easily obtained from decompositions of noncovalent heterodimers if care is taken in the choice of the method, references used, and experimental conditions. Previously, several papers have focused on theoretical considerations concerning the nature of the references. Few investigations have been devoted to conditions required to validate the quality of the experimental results. In the present work, we are interested in rationalizing the origin of nonlinear effects that can be obtained with the kinetic method. It is shown that such deviations result from intrinsic properties of the systems investigated but can also be enhanced by artifacts resulting from experimental issues. Overall, it is shown that orthogonal distance regression (ODR) analysis of kinetic method data provides the optimum way of acquiring accurate thermodynamic information.   相似文献   
3.
The mechanism of the copper-mediated disproportionation of aromatic imine disulfides to benzothiazoles in the gas phase is investigated by experimental and theoretical methods. Application of infrared multiphoton dissociation and hydrogen/deuterium exchange experiments combined with density functional theory (DFT) calculations of the relevant molecular structures and the associated infrared spectra allows the identification of the observed ionic intermediates. The theoretical investigation of the possible reaction pathways supported by collision-induced dissociation experiments provides a consistent mechanistic picture of the reaction catalyzed by a single copper(I) ion. Activation of the substrate proceeds via homolytic sulfur-sulfur bond cleavage, yielding metal complexes in the formal +3 oxidation state; carbon-sulfur coupling and hydrogen-atom transfer complete the transformation to the products. Exploratory studies demonstrate that in the gas phase, the disproportionation of the imine disulfide can also be mediated by other metal ions via different either homo- or heterolytic mechanisms without involving high-valent intermediates.  相似文献   
4.
Even in the highly diluted gas phase, rather than electron transfer the benzene dication C6H62+ undergoes association with dinitrogen to form a transient C6H6N22+ dication which is best described as a ring‐protonated phenyl diazonium ion. Isotopic labeling studies, photoionization experiments using synchrotron radiation, and quantum chemical computations fully support the formation of protonated diazonium, which is in turn a prototype species of superacidic chemistry in solution. Additionally, reactions of C6H62+ with background water involve the transient formation of diprotonated phenol and, among other things, afford a long‐lived C6H6OH22+ dication, which is attributed to the hydration product of Hogeveen’s elusive pyramidal structure of C6H62+, as the global minimum of doubly ionized benzene. Nitrogen is essential for the formation of the C6H6OH22+ dication in that it mediates the formation of the water adduct, while the bimolecular encounter of the C6H62+ dication with water only leads to (dissociative) electron transfer.  相似文献   
5.
Cationized uracil clusters were generated in the gas phase by electrospray ionization (ESI). Mass spectrometry experiments showed that with particular experimental conditions, decameric uracil clusters are magic number clusters. MS/MS experiments demonstrated that the structure of these decameric uracil clusters depends substantially on the size and the charge of the cation. On the basis of the ab initio and density functional theory (DFT) quantum chemistry calculations, structures for these decameric clusters were proposed. These structures are in agreement with the experimental mass spectra of modified nucleobases. Theoretical calculations showed that complexes experimentally observed using ESI-MS techniques, are not naturally the most stable in the gas phase.  相似文献   
6.
Benzylpyridinium ions, generated via electrospray ionization of dilute solutions of their salts in acetonitrile/water, are probed by collisional activation in an ion-trap mass spectrometer. From the breakdown diagrams obtained, phenomenological appearance energies of the fragment ions are derived. Comparison of the appearance energies with calculated reaction endothermicities shows a reasonably good correlation for this particular class of compounds. In addition, the data indirectly indicate that at threshold the dissociation of almost all of the benzylpyridinium ions under study leads to the corresponding benzylium ions, rather than the tropylium isomers. Substituent effects on the fragmentation for a series of benzylpyridinium ions demonstrate that neither mass effects nor differences in density of states seriously affect the energetics derived from the ion-trap experiments.  相似文献   
7.
8.
Understanding ribose reactivity is a crucial step in the “RNA world” scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl2, CaCl2, SrCl2, CuCl2, FeCl2, FeCl3, ZnCl2). A combination of 13C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition‐metal ions with open d‐shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass‐derived carbohydrates by heterogeneous catalysis.  相似文献   
9.
Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17??-estradiol (E2) in its association with the estrogen receptor alpha (ER??). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks?? kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ER?? assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ER?? complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ER?? residues and the substituted steroidal estrogens.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号