首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   2篇
力学   3篇
物理学   9篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2007年   3篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
We report fabrication of silver nanoparticles (Ag NPs) by laser ablation technique in different concentrations of aqueous chitosan solution. The ablation process of silver plate was carried out by using a nanosecond Q-switched Nd:YAG pulsed laser and the characterization of Ag NPs was done by Transmission electron microscopy, UV-Vis spectroscopy, and X-ray diffraction. UV-visible plasmon absorption spectra revealed that the formation efficiency as well as the stability of nanoparticles was increased by addition of chitosan. On the other hand, the size decrement of nanoparticles was more remarkable in the higher chitosan concentration.  相似文献   
2.
We report on remote and contactless photoacoustic imaging (PAI) for the inspection of solid materials using a two-wave mixing interferometer. In this Letter, a semitransparent sample was excited with picosecond laser pulses. The local absorption of the electromagnetic radiation led to generation of broadband ultrasonic waves inside the sample. Ultrasonic waves arriving at the sample surface were detected utilizing a two-wave mixing interferometer. After data acquisition, the initial pressure distribution was reconstructed using a Fourier space synthetic aperture technique algorithm. We show the potential of PAI for the inspection of semitransparent solid materials.  相似文献   
3.
A laser ablation technique is applied for synthesis of silver nanoparticles in different concentrations of polyvinyl alcohol (PVA) aqueous solution. The ablation of high pure silver plate in the solution is carried out by a nanosecond Q-switched Nd:YAG pulsed laser. X-ray diffraction and transmission electron microscopy are implemented to explore the particles sizes. The effects of PYA concentrations on the absorbance of the silver nanoparticles are studied as well, by using a UV-vis spectrophotometer. The preparation process is carried out for deionized water as a reference sample. The comparison of the obtained results with the reference sample shows that the formation efficiency of nanoparticles in PYA is much higher and the sizes of particles are also smaller.  相似文献   
4.
We present two laser ultrasonic receivers based on organic photorefractive polymer composites with 2-[4-bis(2-methoxyethyl)aminobenzylidene]malononitrile (AODCST) or 2-dicyanomethylen-3-cyano-5,5-dimethyl-4-(4′-dihexylaminophenyl)-2,5-dihydrofuran nonlinear optical chromophores. Experimental results show sensitivities of the ultrasonic receivers of ~9.5 × 10?8 nm (W/Hz)0.5 for both composites, and a faster response time (~60 ms) for the AODCST-based laser ultrasonic receiver. We show that such LUS detectors are highly suitable for contactless thickness measurements of aluminum, steel sheets and defect detection with an accuracy of 100 μm.  相似文献   
5.
Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. Due to the lack of information, first an extensive experimental study was carried out to characterize the formability of the niobium sheet, followed by examining the suitability of Hill’s anisotropic yield function to model its plastic behavior. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Hill’s yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet.  相似文献   
6.
Novel C,N-doped TiO2 nanoparticles were prepared by a solid phase reaction. The catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that crystallite size of synthesized C,N-doped TiO2 particles were in nanoscale. UV light photocatalytic studies were carried out using sodium naphthalenesulfonate formaldehyde condensate (SNF) as a model pollutant. The effects of initial concentration of surfactant, catalyst amount, pH, addition of oxidant on the reaction rate were ascertained and optimum conditions for maximum degradation was determined. The results indicated that for a solution of 20 mg/L of SNF, almost 98.7% of the substance were removed at pH ~ 4.0 and 0.44 g/L photocatalyst load, with addition of 1 mM K2S2O8 and irradiation time of 90 min. The kinetics of the process was studied, and the photodegradation rate of SNF was found to obey pseudo-first-order kinetics equation represented by the Langmuir–Hinshelwood model.  相似文献   
7.
In vivo imaging of the mouse retina using visible and near infrared wavelengths does not achieve diffraction-limited resolution due to wavefront aberrations induced by the eye. Considering the pupil size and axial dimension of the eye, it is expected that unaberrated imaging of the retina would have a transverse resolution of 2 microm. Higher-order aberrations in retinal imaging of human can be compensated for by using adaptive optics. We demonstrate an adaptive optics system for in vivo imaging of fluorescent structures in the retina of a mouse, using a microelectromechanical system membrane mirror and a Shack-Hartmann wavefront sensor that detects fluorescent wavefront.  相似文献   
8.
A novel yield function representing the overall plastic deformation in a single crystal is developed using the concept of optimization. Based on the principle of maximum dissipation during a plastic deformation, the problem of single crystal plasticity is first considered as a constrained optimization problem in which constraints are yield functions for slip systems. To overcome the singularity that usually arises in solving the above problem, a mathematical technique is used to replace the above constrained optimization problem with an equivalent problem which has only one constraint. This single constraint optimization problem, the so-called combined constraints crystal plasticity (CCCP) model, is implemented into a finite element code and the results of modeling the uniaxial tensions of the single crystal copper along different crystallographic directions and also hydroforming of aluminum tubes proved the capability of the proposed CCCP model in accurately predicting the deformation in polycrystalline materials.  相似文献   
9.
Up to now, several computational methods have been proposed for crystal plasticity models. The main objective of these computational methods has been to overcome the problem with the non-uniqueness of active slip systems during the plastic deformation of a single crystal. Crystal plasticity models based on a single crystal yield function have been proposed as alternative algorithms to overcome this problem. But the problem with these models is that they use a highly non-linear yield function for the crystal, which makes them computationally expensive. In this paper, a computational method is proposed that would modify a single crystal yield function in order to make it computationally efficient. Also to better capture experimental data, a new parameter is introduced into the single crystal yield function to make it more flexible. For verification, this crystal plasticity model was directly applied for the simulation of hydroforming of an extruded aluminum tube under complex strain paths. It was found that the current model is considerably faster than the previous crystal plasticity model based on a power-law type single crystal yield surface. Due to its computational efficiency, the current crystal plasticity model can also be used to calculate the anisotropy coefficients of phenomenological yield functions.  相似文献   
10.
ZnO nanoplates with Er-doping concentrations varying in the range from 3 to 7 wt% and co-doped with (Er–Yb) (7 + 7 wt%) were successfully prepared by wet chemical precipitation method. The effects of doping on the structural and optical properties of ZnO nanostructures have been systematically investigated. The structural morphology of the prepared nanostructures was found to change with increasing Er-doping concentrations. The visible photoluminescence and infrared photoluminescence of the prepared nanostructures were measured at room temperature. The intensity of visible emission spectra was found to increase with increasing Er-doping concentrations and was further enhanced for (Er–Yb) co-doped ZnO nanoplate samples. Additionally, Er-doped (7 wt%) and Yb-doped (7 wt%) ZnO nanoplates showed an enhanced emission peak at 950 nm, whereas two enhanced emission peaks at 950 and 980 nm have been found for (Er–Yb)-co-doped (7 + 7 wt%) ZnO nanoplates samples when excited at 310, 365 and 371 nm excitation wavelengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号