首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   45篇
  国内免费   1篇
化学   431篇
晶体学   2篇
数学   8篇
物理学   39篇
  2023年   2篇
  2022年   9篇
  2021年   17篇
  2020年   12篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   21篇
  2014年   19篇
  2013年   25篇
  2012年   31篇
  2011年   47篇
  2010年   28篇
  2009年   24篇
  2008年   36篇
  2007年   38篇
  2006年   26篇
  2005年   32篇
  2004年   19篇
  2003年   13篇
  2002年   15篇
  2001年   10篇
  2000年   6篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
1.
Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.  相似文献   
2.
[reaction: see text] Triethylborane-induced hydrometalation of alkynes proceeds in an anti manner to afford the corresponding (Z)-alkenylmetal compounds stereoselectively, where dichloroindium hydride would play a key role. A variety of functional groups including hydroxy, carbonyl, and carboxy groups were tolerant under the reaction conditions. Following iodolysis and cross-coupling reaction of the (Z)-alkenylmetal species show the usefulness of this strategy.  相似文献   
3.
(mu-Hydroxo or oxo)(mu-1,2-peroxo)diiron(III) complexes having a tetradentate tripodal ligand (L) containing a carboxylate sidearm [Fe2(mu-OH or mu-O)(mu-O2)(L)2]n+ were synthesized as models for peroxo-intermediates of non-heme diiron proteins and characterized by various physicochemical measurements including X-ray analysis, which provide fundamental structural and spectroscopic insights into the peroxodiiron(III) complexes.  相似文献   
4.
Alkenylation reaction of alpha-halo carbonyl compounds with alkenylindiums proceeded via a radical process in the presence of triethylborane. Unactivated alkene moieties as well as a styryl group could be introduced by this method. The geometry of the carbon-carbon double bonds of the alkenylindiums was retained. Preparation of an alkenylindium via a hydroindation of 1-alkyne followed by radical alkenylation established an efficient one-pot strategy. [reaction: see text]  相似文献   
5.
Treatment of 1,4‐disubstituted 1,2,3‐triazoles with aryl chlorides in the presence of potassium carbonate under palladium catalysis and microwave irradiation at 250 °C for 15 min leads to arylation of the triazole at the 5‐position. A variety of functional groups, including ester and hydroxy groups, are compatible. The procedure is suitable for the regioselective preparation of trisubstituted triazoles. Microwave irradiation accelerates the reaction, thus allowing the rapid synthesis of trisubstituted triazoles, which are difficult to synthesize selectively.  相似文献   
6.
Heating mixtures of 2-(pyrrol-1-yl)benzaldehydes and aryl amines under argon afforded 9-arylamino-9H-pyrrolo[1,2-a]indoles, via cyclization of the resulting 2-(pyrrol-1-yl)benzaldimine intermediates. Heating in the presence of oxygen afforded (Z)-9-arylimino-9H-pyrrolo[1,2-a]indoles, which were successfully hydrolyzed with hydrochloric acid to give pyrrolo[1,2-a]indol-9-ones.  相似文献   
7.
The structure and dioxygen-reactivity of copper(I) complexes R supported by N,N-bis(6-methylpyridin-2-ylmethyl)amine tridentate ligands L2R[R (N-alkyl substituent)=-CH2Ph (Bn), -CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)] have been examined and compared with those of copper(I) complex (Phe) of N,N-bis[2-(pyridin-2-yl)ethyl]amine tridentate ligand L1(Phe) and copper(I) complex (Phe) of N,N-bis(pyridin-2-ylmethyl)amine tridentate ligand L3(Phe). Copper(I) complexes (Phe) and (PhePh) exhibited a distorted trigonal pyramidal structure involving a d-pi interaction with an eta1-binding mode between the metal ion and one of the ortho-carbon atoms of the phenyl group of the N-alkyl substituent [-CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)]. The strength of the d-pi interaction in (Phe) and (PhePh) was weaker than that of the d-pi interaction with an eta2-binding mode in (Phe) but stronger than that of the eta1 d-pi interaction in (Phe). Existence of a weak d-pi interaction in (Bn) in solution was also explored, but its binding mode was not clear. Redox potentials of the copper(I) complexes (E1/2) were also affected by the supporting ligand; the order of E1/2 was Phe>R>Phe. Thus, the order of electron-donor ability of the ligand is L1Phe相似文献   
8.
Hydrogallation of carbon[bond]carbon multiple bonds proceeds in the presence of triethylborane as a radical initiator. Several functionalities do not interfere with this reaction. Resulting alkenyl- and alkylgallium species can be trapped by several electrophiles. Highly regioselective radical addition of an indium hydride reagent to alkynes is also achieved. Various functionalities are tolerant under the reaction conditions. The reaction proceeds with complete anti stereoselectivity. Alkenylindiums obtained via hydroindation can be employed for the following cross-coupling reaction with aryl halides in one pot.  相似文献   
9.
We developed a rapidly regenerable cell culture system in which the cell culture substrate detects cell death and selectively releases the dead cells. This culture material was achieved by combining a detector that responds to the signal from the dead cells and an actuator to release the dead cells. Benzo-18-crown-6-acrylamide (BCAm) with a pendant crown ether receptor was used as the sensor to recognize cellular signals and N-isopropylacrylamide (NIPAM) was used as the actuator. This copolymer of NIPAM and BCAm can respond to potassium ions and change its nature from hydrophobic to hydrophilic at the culture temperature of 37 degrees C. Living cells concentrate potassium ion internally; when cells die, potassium ions are released. The polymer surface recognizes the potassium ions released from the dead cells, the NIPAM hydrates, and the dead cells are selectively detached. This in vitro culture system is a novel one in which artificial culture materials work cooperatively with cellular metabolism by responding to this signal from the cells, thereby realizing in vitro tissue regeneration partly mimicking the mechanisms of in vivo homeostasis.  相似文献   
10.
A cobalt complex, CoCl2[1,6-bis(diphenylphosphino)hexane], catalyzes an alkylation reaction of styrenes in the presence of Me3SiCH2MgCl in ether to yield beta-alkylstyrenes. A variety of alkyl halides including alkyl chlorides can be employed as an alkyl source. A radical mechanism is strongly suggested for this alkylation reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号