首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   1篇
化学   13篇
物理学   2篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2007年   4篇
  1987年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Bis(indolyl)methanes were synthesized by the reaction of indole derivatives and aromatic and aliphatic aldehydes in the presence of diammonium hydrogen phosphate as a solid catalyst under solvent-free conditions. This methodology offers significant improvements for the synthesis of bis(indolyl)methanes with regard to the yield of products, simplicity in operation, and green aspects by avoiding toxic catalysts and solvents.  相似文献   
2.
ZnO–SnO2 nanoparticles were prepared by coprecipitation method; then Mg, with different molar ratios and calcination temperatures, was loaded on the coupled nanoparticles by impregnation method. The synthesized nanoparticles were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) techniques. Based on XRD results, the ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles were made of ZnO and SnO2 nanocrystallites. According to DRS spectra, the band gap energy value of 3.13 and 3.18 eV were obtained for ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles, respectively. BET analysis revealed a Type III isotherm with a microporous structure and surface area of 32.051 and 49.065 m2 g?1 for ZnO–SnO2 and Mg/ZnO–SnO2, respectively. Also, the spherical shape of nanocrystallites was deduced from TEM and FESEM images. The photocatalytic performance of pure ZnO–SnO2 and Mg/ZnO–SnO2 was analyzed in the photocatalytic removal of methyl orange (MO). The results indicated that Mg/ZnO–SnO2 exhibited superior photocatalytic activity to bare ZnO–SnO2 photocatalyst due to high surface area, increased MO adsorption and larger band gap energy. Maximum photocatalytic activity of Mg/ZnO–SnO2 nanoparticles was obtained with 0.8 mol% Mg and calcination temperature of 350°C.  相似文献   
3.
Recent advances in biotechnology are making it increasingly easy to engineer microbial communities as biocatalysts of bioelectrochemical systems. This is vital in the context of precision electroactive biofilm, as extracellular electron transfer efficiency within electrogenic consortia at the microbe/anode interface is critical for bioelectricity production in a bioelectrochemical device. This research focuses on the use of real multispecies substrates as sources of both electroactive organisms and organic matter loading and summarizes powerful techniques that enable control over biofilm composition in the anode.  相似文献   
4.
5.
The preparation of Ni@Pd core–shell nanoparticles immobilized on yolk–shell Fe3O4@polyaniline composites is reported. Fe3O4 nanoclusters were first synthesized through the solvothermal method and then the SiO2 shell was coated on the Fe3O4 surface via a sol–gel process. To prepare Fe3O4@SiO2@polyaniline composites, polyvinylpyrrolidone was first grafted on to the surface of Fe3O4@SiO2 composites and subsequently polymerization of aniline was carried out via an ultrasound‐assisted in situ surface polymerization method. Selective etching of the middle SiO2 layer was then accomplished to obtain the yolk–shell Fe3O4@polyaniline composites. The approach uses polyaniline (PANI) conductive polymer as a template for the synthesis of Ni@Pd core–shell nanoparticles. The catalytic activity of the synthesized yolk–shell Fe3O4@PANI/Ni@Pd composite was investigated in the reduction of o‐nitroaniline to benzenediamine by NaBH4, which exhibited conversion of 99% in 3 min with a very low content of the catalyst. Transmission electron microscopy, X‐ray photoelectron spectroscopy, TGA, X‐ray diffraction, UV–visible, scanning electron microscopy, X‐ray energy dispersion spectroscopy and FT‐IR were employed to characterize the synthesized nanocatalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
Alum (KAl(SO4)2 · 12H2O) is used as an efficient catalyst in the Pechmann condensation of phenol derivatives with β-keto esters leading to the formation of coumarins in excellent yields under solvent-free conditions. This methodology offers significant improvements for the synthesis of coumarins with regard to the yield of products, simplicity in operation, and green aspects by avoiding toxic catalysts and solvents.  相似文献   
7.
Chitosan is a linear polysaccharide and non-toxic bioactive polymer with a wide variety of applications due to its functional properties such as ease of modification, and biodegradability. In this study, a green protocol for supporting of Cu(II) on chitosan-encapsulated magnetic Fe3O4 nanoparticles is described. The morphological and physicochemical features of the material were determined using several advanced techniques like fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), inductively coupled plasma (ICP), vibrating sample magnetometer (VSM) and X-ray photoelectron spectroscopy (XPS). The average diameter of the NPs was approximately 15–25 nm. In addition, the Fe3O/CS/Cu(II) nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of lung well-differentiated bronchogenic adenocarcinoma, lung moderately differentiated adenocarcinoma, and lung poorly differentiated adenocarcinoma of human lung in-vitro conditions. In the cytotoxicity and anti-human lung studies, the nanocomposite was treated to lung cancer lung well-differentiated bronchogenic adenocarcinoma (HLC-1), lung moderately differentiated adenocarcinoma (LC-2/ad), and lung poorly differentiated adenocarcinoma (PC-14) cell line following MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of Fe3O/CS/Cu(II) nanocomposite. The recent results suggest that Fe3O/CS/Cu(II) nanocomposite have a suitable anticancer activity against lung cell lines.  相似文献   
8.
In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.  相似文献   
9.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
In this paper, we consider estimating the spatial variations of a wireless channel, based on a small number of measurements. We propose an integrated sparsity and model-based channel prediction framework. Our approach properly takes advantage of both channel compressibility in the frequency domain and channel probabilistic characterization in the spatial domain. We test our framework using outdoor and indoor channel measurements. The results confirm the superior performance of the proposed integrated approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号