首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54153篇
  免费   12952篇
  国内免费   4027篇
化学   54153篇
晶体学   543篇
力学   1853篇
综合类   152篇
数学   4160篇
物理学   10271篇
  2024年   68篇
  2023年   434篇
  2022年   779篇
  2021年   879篇
  2020年   1991篇
  2019年   3278篇
  2018年   1674篇
  2017年   1274篇
  2016年   4357篇
  2015年   4407篇
  2014年   4523篇
  2013年   5444篇
  2012年   4677篇
  2011年   3848篇
  2010年   4077篇
  2009年   3937篇
  2008年   3668篇
  2007年   2917篇
  2006年   2491篇
  2005年   2529篇
  2004年   2110篇
  2003年   1901篇
  2002年   2601篇
  2001年   1900篇
  2000年   1711篇
  1999年   781篇
  1998年   380篇
  1997年   327篇
  1996年   333篇
  1995年   313篇
  1994年   227篇
  1993年   194篇
  1992年   196篇
  1991年   185篇
  1990年   145篇
  1989年   115篇
  1988年   103篇
  1987年   80篇
  1986年   66篇
  1985年   57篇
  1984年   38篇
  1983年   29篇
  1982年   19篇
  1981年   19篇
  1980年   11篇
  1979年   4篇
  1978年   3篇
  1974年   4篇
  1957年   6篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Two series of novel alternating copolyoxamides (PAnT-alt-n2 and PAn2-alt-62) are synthesized via solution/solid-state polycondensation (SSP). The alternating structures are analyzed carefully with 1H NMR and 13C NMR spectra. The melting behaviors, thermal stabilities, crystal structures and crystallinities are systematically evaluated by DSC, TGA and WAXD. The results reveal that these alternating copolyoxamides possess almost perfect alternating chain structures and have high melting temperature (Tm > 270 °C), high crystallinity (Xc > 32%) and high decomposition temperature (T5 > 405 °C) as well as low saturated water absorption (<3.5 wt%), which suggests that they have high potential as engineering plastic of high heat resistant.  相似文献   
2.
Bo  Luo  Gao  Wei  Yu  Yuguo  Chen  Xiaojun 《Nonlinear dynamics》2022,110(1):281-311
Nonlinear Dynamics - The perovskite solar cell (PSC) is one of the most promising photovoltaic candidates along with the highly increasing demand for green electricity. One of the main concerns...  相似文献   
3.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
4.
5.
By linking the carbazole unit to the nitrogen atom of acridone through phenyl or pyridyl, two compounds, named 10-(4-(9H-carbazol-9-yl)phenyl)acridin-9(10H)-one (AC-Ph-Cz) and 10-(5-(9H-carbazol-9-yl)pyridin-2-yl)acridin-9(10H)-one (AC-Py-Cz) were designed and synthesized. These two materials, characterized with highly twisted and rigid structure, good thermal stability, and balanced carrier-transporting properties, were employed as host materials for green phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes (OLEDs). The carbazole group, despite its small contribution to the highest occupied molecular orbitals (HOMOs) of these two materials, plays an essential role as an intramolecular host in energy delivering and improving the hole transporting ability of these two hosts. The incorporation of the electron-deficient pyridyl group as a linking group slightly improves the electron transporting capability of AC-Py-Cz. The green phosphorescent OLED (PhOLED) based on AC-Py-Cz exhibited excellent device performance with a turn-on voltage of 2.5 V, a maximum power efficiency and an external quantum efficiency (ηext) of 89.8 lm W−1 and 25.2 %, respectively, benefitting from the better charge-balancing ability of AC-Py-Cz host due to the presence of the pyridyl bridge. More importantly, all the devices based on these two hosts showed low efficiency roll-off at high brightness due to the suppressed non-radiative transition in the emitting layer. In particular, the AC-Py-Cz-hosted green PhOLED exhibited an efficiency roll-off of 1.6 % from the maximum next at a high brightness of 1000 cd m−2 and a roll-off of 15.9 % at an extremely high brightness of 10000 cd m−2. This study manifests that acridone-based host materials have great potential in fabricating OLEDs with low efficiency roll-off.  相似文献   
6.
Gao  Zhigen  Guo  Jianhua  Ma  Yanyuan 《中国科学 数学(英文版)》2021,64(8):1905-1916
Science China Mathematics - Linear factor models are familiar tools used in many fields. Several pioneering literatures established foundational theoretical results of the quasi-maximum likelihood...  相似文献   
7.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
8.
9.
Metal halide perovskites have demonstrated impressive properties for achieving efficient monochromatic light-emitting diodes. However, the development of white perovskite light-emitting diodes (PeLEDs) remains a big challenge. Here, we demonstrate a single-emissive-layer all-perovskite white PeLED using a mixed halide perovskite film as the emissive layer. The perovskite film consists of separated mixed halide perovskite phases with blue and red emissions, which are beneficial for suppressing halide anion exchange and preventing charge transfer. As a result, the white PeLED shows balanced white light emission with Commission Internationale de L''Eclairage coordinates of (0.33, 0.33). In addition, we find that the achievement of white light emission from mixed halide perovskites strongly depends on effective modulation of the halide salt precursors, especially lead bromide and benzamidine hydrochloride in our case. Our work provides very useful guidelines for realizing single-emissive-layer all-perovskite white PeLEDs based on mixed halide perovskites, which will spur the development of high-performance white PeLEDs.

We demonstrated a single-emissive-layer all-perovskite white light-emitting diode based on a mixed halide perovskite film.  相似文献   
10.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号