首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   31篇
  国内免费   9篇
化学   203篇
力学   13篇
数学   7篇
物理学   88篇
  2023年   20篇
  2022年   5篇
  2021年   9篇
  2020年   28篇
  2019年   14篇
  2018年   9篇
  2017年   7篇
  2016年   11篇
  2015年   15篇
  2014年   13篇
  2013年   16篇
  2012年   22篇
  2011年   35篇
  2010年   14篇
  2009年   10篇
  2008年   21篇
  2007年   18篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有311条查询结果,搜索用时 0 毫秒
1.
The use of Cu-doped (K0.5Na0.5)0.2(Sr0.61Ba0.39)0.9Nb2O6 as self-pumped phase conjugators using internal reflection is reported. Reflectivities as high as 63% at 5145.5 nm and 60% at 632.8 nm were realized. It was found that the photorefractive response changes significantly at different doping concentration. The responses of the crystals to the laser wavelength, incident angle and dopant concentration are studied.  相似文献   
2.
To bridge the gap between laboratory-scale studies and commercial applications, mass production of high quality graphene is essential. A scalable exfoliation strategy towards the production of graphene sheets is presented that has excellent yield (ca. 75 %, 1–3 layers), low defect density (a C/O ratio of 21.2), great solution-processability, and outstanding electronic properties (a hole mobility of 430 cm2 V−1 s−1). By applying alternating currents, dual exfoliation at both graphite electrodes enables a high production rate exceeding 20 g h−1 in laboratory tests. As a cathode material for lithium storage, graphene-wrapped LiFePO4 particles deliver a high capacity of 167 mAh g−1 at 1 C rate after 500 cycles.  相似文献   
3.
4.
5.
We have demonstrated that the fragments of Telaprevir can act as organocatalysts for asymmetric aldol reactions between aromatic aldehydes and acetone under mild conditions. The reaction conditions have been optimized in terms of the catalyst nature, choice of temperature, solvent, additive, and the catalyst loading. Under proper conditions, fairly good yield and enantioselectivity have been achieved.  相似文献   
6.
Characterized with a large gas production and low combustion temperature, the guanidine nitrate (GN) gas-generating agents are studied and applied widely. The determination factors of thermal decomposition properties of guanidine nitrate and basic cupric nitrate (GN/BCN) gas-generating agents for airbag application was investigated by the thermogravimetry–differential scanning calorimetry–mass spectrmetry–Fourier transform infrared spectroscopy (TG-DSC-MS-FTIR) and automatic calorimeter. Five different mass ratios were concerned. Our study showed that the onset reaction temperatures of GN/BCN mixtures were lower than that of individual GN and BCN. The thermal decomposition of GN/BCN mixtures could be divided into three stages, including the dissociation and escape of crystal water, solid (GN)-solid (BCN) phase reaction, and liquid (GN)-solid (BCN) phase reaction. When mass ratio of GN/BCN was 62.24/37.73, the largest value of the reaction heat was measured to 3152.7 J g?1, with N2 and H2O as the major gases during thermal decomposition.  相似文献   
7.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   
8.
A facile nonaqueous solution route for the fabrication of NdOCl nanostructures based on a ligand‐exchange protocol and further thermal decomposition in organic medium, using only chloride salt as the neodymium source, is reported and the formation mechanism is proposed. The morphology, crystal structure, and chemical compositions of the sample were characterized at the nanoscale. XRD results and selected‐area electron diffraction patterns show that the sample is purely tetragonal NdOCl without any other impurity phases. TEM results show that the NdOCl nanostructures have a well‐defined flowerlike shape, which looks like a chrysanthemum just about to bloom. Magnetization measurements reveal that the NdOCl nanoflowers show room‐temperature ferromagnetism. The photoluminescence properties were also studied. These results are significant for fundamental research and promising applications of rare‐earth‐based nanostructures.  相似文献   
9.
The precise introduction of nonplanar pores in the backbone of graphene nanoribbon represents a great challenge. Here, we explore a synthetic strategy toward the preparation of nonplanar porous graphene nanoribbon from a predesigned dibromohexabenzotetracene monomer bearing four cove-edges. Successive thermal annealing steps of the monomers indicate that the dehalogenative aryl-aryl homocoupling yields a twisted polymer precursor on a gold surface and the subsequent cyclodehydrogenation leads to a defective porous graphene nanoribbon containing nonplanar [14]annulene pores and five-membered rings as characterized by scanning tunneling microscopy and noncontact atomic force microscopy. Although the C–C bonds producing [14]annulene pores are not achieved with high yield, our results provide new synthetic perspectives for the on-surface growth of nonplanar porous graphene nanoribbons.  相似文献   
10.
The rapid development of on-surface synthesis provides a unique approach toward the formation of carbon-based nanostructures with designed properties. Herein, we present the on-surface formation of CN-substituted phenylene vinylene chains on the Au(111) surface, thermally induced by annealing the substrate stepwise at temperatures between 220 °C and 240 °C. The reaction is investigated by scanning tunneling microscopy and density functional theory. Supported by the calculated reaction pathway, we assign the observed chain formation to a Knoevenagel condensation between an aldehyde and a methylene nitrile substituent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号