首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19988篇
  免费   3685篇
  国内免费   3654篇
化学   15912篇
晶体学   418篇
力学   999篇
综合类   327篇
数学   2272篇
物理学   7399篇
  2024年   67篇
  2023年   359篇
  2022年   734篇
  2021年   764篇
  2020年   846篇
  2019年   861篇
  2018年   794篇
  2017年   807篇
  2016年   944篇
  2015年   1146篇
  2014年   1276篇
  2013年   1567篇
  2012年   1820篇
  2011年   1948篇
  2010年   1549篇
  2009年   1356篇
  2008年   1551篇
  2007年   1399篇
  2006年   1178篇
  2005年   1024篇
  2004年   810篇
  2003年   715篇
  2002年   825篇
  2001年   672篇
  2000年   465篇
  1999年   362篇
  1998年   242篇
  1997年   177篇
  1996年   200篇
  1995年   161篇
  1994年   142篇
  1993年   85篇
  1992年   83篇
  1991年   77篇
  1990年   67篇
  1989年   46篇
  1988年   30篇
  1987年   35篇
  1986年   19篇
  1985年   32篇
  1984年   16篇
  1983年   16篇
  1982年   12篇
  1981年   6篇
  1980年   3篇
  1979年   8篇
  1978年   5篇
  1976年   5篇
  1975年   3篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC–MS/LC–MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of???7.274 and???5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020–3 has demonstrated better stability in the ligand–receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.

Graphic abstract
  相似文献   
2.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
3.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
4.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
5.
6.
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D-QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.  相似文献   
7.
8.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
9.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号