首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   1篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
For the first time in SnO2 based dye solar cells, here we report, efficiency exceeding 3% of the cells consisting with Indoline D-149 dye with unmodified SnO2 nano-crystallites. The cells sensitized with metal free D-149 dye together with liquid electrolyte comprising with 0.5 M tetrapropyl ammonium iodide and 0.05 M iodine in a mixture of acetonitrile and ethylene carbonate (1:4 by volume) delivered a short circuit current density of 10.4 mA cm?2 with an open circuit voltage of 530 mV under the illumination of 100 mW cm?2 (AM1.5) having an efficiency of 3.1%. As evident from the FTIR measurement, strong surface passivation of recombination centers of SnO2 crystallites due to the dual mode of attachment of dye molecules to the surface of SnO2 via both COOH and S–O direct bond might be the possible reason for this enhancement in these SnO2 based cells.  相似文献   
2.
Cellulose - Nanocellulose/polyvinyl alcohol/curcumin (CNC/PVA/curcumin) nanoparticles with enhanced drug loading properties were developed by the dispersion of nanocellulose in curcumin/polyvinyl...  相似文献   
3.
Two new semiconducting polymers poly{4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran} ( P1 ) and poly {4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]difuran‐alt‐4,8‐bis(4‐decylphenylethynyl)benzo[1,2‐b:4,5‐b′]dithiophene} ( P2 ) have been synthesized. These polymers were tested in bulk heterojunction solar cells yielding power conversion efficiencies of 1.19% for P1 and 0.79% for P2 . The surface morphology of the solar cell devices indicated that both the polymers display a granular morphology with smoother films displaying higher power conversion efficiencies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
4.
Synthesis of two conducting polymers containing 3‐hexylthiophene and 3‐[2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy]thiophene is demonstrated. In thin‐film transistors, the high‐molecular‐weight polymer shows an average mobility of 4.2 × 10?4 cm2 V?1 s?1. Most importantly, the polymers have high conductivity upon doping with iodine and also have high stability in the doped state with high conductivities measured even after 1 month. Furthermore, the doping causes transparency to thin films of the polymer and the films are resistant to common organic solvents. All these properties indicate a great potential for the iodine‐doped polymer to be used as an alternative to commercially available poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1079–1086  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号