首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
力学   1篇
  2021年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.  相似文献   
2.
Described in this paper is a six-legged Stewart-Gough parallel platform driven by a relatively new type of fluidic muscles. The advantage of the platform is that it is virtually free of stick-slip effects. Thus, the device is well-suited for fine-tuned force control and for physical simulation of virtual force-displacement laws. The legs of the platform are of type RRPS and are equipped with a coaxial coil spring and a fluidic muscle providing push and pull forces. Each leg is equipped with a force sensor, a pressure sensor, and a magnetostrictive position encoder. The control for the platform consists of six control loops for the six operated actuators with model-based force control comprising individual gas models as well as the rubber nonlinearities for each leg. The control law also includes the gas flow in the proportional directional control valve in 3/3-way function. The present paper describes the basic architecture of the platform, the dynamic models, as well as testbed results for the existing fluidic-muscle parallel platform DynaHex. It is shown that the presented control scheme leads to a stable force control of the platform for quasi-static motion. As an application, the device will be employed in fields of biomechanics, as well as in general environments requiring physical simulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号