首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   0篇
化学   138篇
力学   5篇
数学   6篇
物理学   38篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   18篇
  2011年   16篇
  2010年   9篇
  2009年   8篇
  2008年   13篇
  2007年   10篇
  2006年   14篇
  2005年   13篇
  2004年   9篇
  2003年   9篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
排序方式: 共有187条查询结果,搜索用时 31 毫秒
1.
2.
To resolve the molecular basis of the coloration mechanism of alpha-crustacyanin, we used (13)C-labeled astaxanthins as chromophores for solid-state (13)C NMR and resonance Raman spectroscopy of [6,6',7,7']-(13)C(4) alpha-crustacyanin and [8,8',9,9',10,10',11,11',20,20']-(13)C(10) alpha-crustacyanin. We complement the experimental data with time-dependent density functional theory calculations on several models based on the structural information available for beta-crustacyanin. The data rule out major changes and strong polarization effects in the ground-state electron density of astaxanthin upon binding to the protein. Conformational changes in the chromophore and hydrogen-bond interactions between the astaxanthin and the protein can account only for about one-third of the total bathochromic shift in alpha-crustacyanin. The exciton coupling due to the proximity of two astaxanthin chromophores is found to be large, suggesting that aggregation effects in the protein represent the primary source of the color change.  相似文献   
3.
Understanding the degradation behavior of polymeric microspheres is crucial for the successful application of such devices in controlled drug delivery. The degradation mechanism of poly(lactic-co-glycolic acid) (PLGA) microspheres inside phagocytic cells is not known, but different models for degradation in aqueous solution have been proposed. We have used confocal Raman spectroscopy and imaging to study the intracellular degradation of PLGA microspheres inside individual macrophages. Our results show that ingested microspheres degrade in a heterogeneous manner, with a more rapid degradation in the center. Comparison of Raman spectra from degrading beads with those of uningested beads reveals that ester hydrolysis occurs throughout the phagocytosed microspheres, with a selective loss of glycolic acid units. Furthermore, we show that PLGA degradation is a cell-mediated process, possibly caused by the low pH of the phagosome and/or the presence of hydrolytic enzymes. In conclusion, we have demonstrated that the chemical composition of degrading polymers inside cells can be probed by Raman spectral imaging. This technique will expand the capabilities of investigating biomaterial degradation in vivo.  相似文献   
4.
The time-resolved fluorescence properties of the bacteriophage T4 capsid protein gp23 are investigated. The structural characteristics of this protein are largely unknown and can be probed by recording time-resolved and decay-associated fluorescence spectra and intensity decay curves using a 200 ps-gated intensified CCD-camera. Spectral and decay data are recorded simultaneously, which makes data acquisition fast compared to time-correlated single-photon counting. A red-shift of the emission maximum within the first nanosecond of decay is observed, which can be explained by the different decay-associated spectra of fluorescence lifetimes of the protein in combination with dipolar relaxation. In addition, iodide quenching experiments are performed, to study the degree of exposure of the various tryptophan residues. A model for the origin of the observed lifetimes of 0.032 +/- 0.003, 0.39 +/- 0.06, 2.1 +/- 0.1 and 6.8 +/- 0.8 ns is presented: the 32 ps lifetime can be assigned to the emission of a buried tryptophan residue, the 0.4 and 2.1 ns lifetimes to two partly buried residues, and the 6.8 ns lifetime to a single tryptophan outside the bulk of the folded gp23.  相似文献   
5.
Reversed-phase LC on C-18 bonded silica with a methanol–ammonium formate gradient was used to determine the main flavonoids in leaves of four species of the Leguminosae family. The detection modes were diode-array UV absorbance, fluorescence, and (tandem) mass spectrometry. LC–UV was used for a general screening, sub-classification, and the calculation of total flavonoid contents. LC–FLU was included to identify isoflavones on the basis of their native fluorescence. Most structural information regarding aglycons, sugar moieties, and acidic groups was derived from LC–MS in both the full-scan and extracted-ion mode, using negative-ion atmospheric pressure chemical ionization. MS/MS did not provide much additional information, because the same fragments were observed as in full-scan MS.In T. pratense and T. repens, the main constituents were flavonoid glucoside–(di)malonates, while T. dubium and L. corniculatus mainly contained flavonoid (di)glycosides. Satellite sets comprising an aglycon, the glucoside and glucoside–malonates or –acetates, were abundantly present only in T. pratense. Generally speaking, the main aglycons and sugars in the four plant species are surprisingly different. In addition, while the results for T. pratense are similar to those reported in the literature, there is little agreement in the case of the other species. Finally, total flavonoid contents ranged from 50–65 mg/g for L. corniculatus and T. dubium, to 15 mg/g for T. pratense and only 1 mg/g for T. repens.  相似文献   
6.
Cyclic voltammetry shows that yeast iso-1-cytochrome c (YCC), chemisorbed on a bare gold electrode via Cys102, exhibits fast, reversible interfacial electron transfer (k(0) = 1.8 x 10(3) s(-1)) and retains its native functionality. Vectorially immobilized YCC relays electrons to yeast cytochrome c peroxidase, and to both cytochrome cd(1) nitrite reductase (NIR) and nitric oxide reductase from Paracoccus denitrificans, thereby revealing the mechanistic properties of these enzymes. On a microelectrode, we measured nitrite turnover by approximately 80 zmol (49 000 molecules) of NIR, coadsorbed on 0.65 amol (390 000 molecules) of YCC.  相似文献   
7.
A versatile liquid chromatographic platform has been developed for analysing underivatized carbohydrates using high performance anion exchange chromatography (HPAEC) followed by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector (IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric detection but not compatible with electrospray ionisation (ESI). Therefore a membrane-desalting device was installed after the splitter and prior to the ESI interface converting sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection glucose, fructose, and sucrose were used as analytes. A calibration with external standards from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL's for glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these conditions IPAD is 3-10 times more sensitive for those carbohydrates. The applicability of the method was demonstrated analysing carbohydrates in real world samples such as chicory inulin where polyfructans up to a molecular mass of 7000 g/mol were detected as quadrupoly charged lithium adducts. Furthermore mono-, di-, tri-, and oligosaccharides were detected in chicory coffee, honey and beer samples.  相似文献   
8.
In column liquid chromatography (LC) coupled to conventional Raman spectroscopy (RS) removal of the spectral background of the eluent is often demanding, because of the strong signals of the organic modifier. A new chemometrical method is proposed, called the eluent background subtraction (EBS) method, which can correct for small shape and intensity differences of the eluent spectra. The variations in the eluent spectra are modelled using principal component analysis (PCA). The PCA loading vectors are subsequently used for eluent background correction of the elution spectra of the analyte. The loading vectors are fitted under these spectra by an asymmetric least-squares method. This method was successfully applied under various experimental conditions and performed much better than conventional background correction methods. Analyte detectability was improved by (weighted) averaging of all elution spectra and smoothing via a p-spline function.  相似文献   
9.
The sensitivity of far‐field Raman micro‐spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error margin of 100%. Raman imaging of thin‐film surfaces with a far‐field optical microscope establishes the distribution of a polymer with a lateral resolution of ~400 nm and the homogeneity of the film. Raman images are presented for spin‐coated thin films of polysulfone (PSU) with average thicknesses between 3 and 50 nm. In films with an average thickness of 43 nm, the variation in thickness was around 5% for PSU. In films with an average thickness of 3 nm for PSU, the detected thickness variation was 100%. Raman imaging was performed in minutes for a surface area of 900 µm2. The results illustrate the ability of far‐field Raman microscopy as a sensitive method to quantitatively determine the thickness of thin films down to the nanometer range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
We demonstrate the widespread occurrence of dynamically maintained spike timing sequences in recurrent networks of pulse-coupled spiking neurons with large time delays. The sequences occur in transient, quasistable phase-locking states. The system spontaneously jumps between these states. This collective dynamics enables the system to generate a large number of distinct precise spike timing sequences. Distributed time delays play a constructive role by enhancing the dominance in parameter space of the dynamics responsible for producing the large variety of spike timing sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号