首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
化学   59篇
物理学   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   8篇
  2007年   2篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   7篇
  1999年   1篇
  1994年   2篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   
2.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   
3.
The rheological behavior of beta-casein adsorption layers formed at the air-water and tetradecane-water interfaces is studied in detail by means of pendant drop tensiometry. First, its adsorption behavior is briefly summarized at both interfaces, experimentally and also theoretically. Subsequently, the experimental dilatational results obtained for a wide range of frequencies are presented for both interfaces. An interesting dependence with the oscillation frequency is observed via the comparative analysis of the interfacial elasticity (storage part) and the interfacial viscosity (loss part) for the two interfaces. The analysis of the interfacial elasticities provides information on the conformational transitions undergone by the protein upon adsorption at both interfaces. The air-water interface shows a complex behavior in which two maxima merge into one as the frequency increases, whereas only a single maximum is found at the tetradecane interface within the range of frequencies studied. This is interpreted in terms of a decisive interaction between the oil and the protein molecules. Furthermore, the analysis of the interfacial viscosities provides information on the relaxation processes occurring at both interfaces. Similarly, substantial differences arise between the gaseous and liquid interfaces and various possible relaxation mechanisms are discussed. Finally, the experimental elasticities obtained for frequencies higher than 0.1 Hz are further analyzed on the basis of a thermodynamic model. Accordingly, the nature of the conformational transition given by the maximum at these frequencies is discussed in terms of different theoretical considerations. The formation of a protein bilayer at the interface or the limited compressibility of the protein in the adsorbed state are regarded as possible explanations of the maximum.  相似文献   
4.
Interfacial properties of pulmonary surfactant layers   总被引:1,自引:0,他引:1  
The composition of the pulmonary surfactant and the border conditions of normal human breathing are relevant to characterize the interfacial behavior of pulmonary layers. Based on experimental data methods are reviewed to investigate interfacial properties of artificial pulmonary layers and to explain the behavior and interfacial structures of the main components during compression and expansion of the layers observed by epifluorescence and scanning force microscopy. Terms like over-compression, collapse, and formation of the surfactant reservoir are discussed. Consequences for the viscoelastic surface rheological behavior of such layers are elucidated by surface pressure relaxation and harmonic oscillation experiments. Based on a generalized Volmer isotherm the interfacial phase transition is discussed for the hydrophobic surfactant proteins, SP-B and SP-C, as well as for the mixtures of dipalmitoylphosphatidylcholine (DPPC) with these proteins. The behavior of the layers depends on both the oligomerisation state and the secondary structure of the hydrophobic surfactant proteins, which are controlled by the preparation of the proteins. An example for the surface properties of bronchoalveolar porcine lung washings of uninjured, injured, and Curosurf treated lavage is discussed in the light of surface behavior. An outlook summarizes the present knowledge and the main future development in this field of surface science.  相似文献   
5.

Background  

Growth hormone (GH) plays an incompletely understood role in the development of the central nervous system (CNS). In this study, we use transgenic mice expressing a growth hormone antagonist (GHA) to explore the role of GH in regulating postnatal brain, spinal cord and body growth into adulthood. The GHA transgene encodes a protein that inhibits the binding of GH to its receptor, specifically antagonizing the trophic effects of endogenous GH.  相似文献   
6.
Π/A isotherms of spread β-lactoglobulin and β-casein at the air–water interface are measured under different spreading conditions. While the isotherms do not show drastic effects of the spreading concentration and the compression rate the interfacial shear rheological behaviour is significantly influenced. In particular, the shear viscosity of β-lactoglobulin layers depend directly on the spreading concentration. Significant viscosity increase is obtained at larger surface pressures when the spreading concentration is increased. In contrast the shear rheology of the spread β-casein layers can be normalised by plotting the viscosities as a function of the surface pressure Π. The different behaviour is discussed in terms of denaturation of the β-lactoglobulin during the monolayer formation process by adsorption from the spread thin protein solution layer.  相似文献   
7.
The du Noüy and oscillating droplet shape methods are employed to study the effects of the ionic strength and pH of a medium, as well as the addition of nonelectrolytes (lower alcohols and acetone), on the adsorption and surface rheological characteristics of aqueous solutions of humic acid salts (sodium humates) at the liquid-air interface. When added in concentrations at which the aggregation of humic substances is not yet observed, strong electrolytes (NaCl and HCl) decrease the equilibrium surface tension and increase the dilatational viscoelastic modulus of aqueous sodium humate solutions. The aggregation of humic substances enhances the surface tension and reduces the viscoelastic modulus of surface layers. Nonelectrolyte additives decrease the surface tension and dilatational modulus of aqueous humic acid salt solutions. The equilibrium surface tension of sodium humate-nonelectrolyte mixed solutions is described in terms of two different models, namely, a relatively exact model of polyelectrolyte-nonionic surfactant adsorption and a simple additive model. It is shown that the additive model may be used to predict the equilibrium surface tension for the mixtures of high- and low-molecular-mass surfactants.  相似文献   
8.
Progress in the understanding of interfacial molecular recognition kinetics is obtained by use of the sweeping technique for experimental studies of the reaction kinetics between a host monolayer and a non-surface-active species dissolved in the aqueous subphase. The experimental results show that the interfacial recognition reaction between a 2C(11)H(23)-melamine (2,4-di(n-undecylamino)-6-amino-1,3,5-triazine) monolayer and dissolved barbituric acid is reversible when the 2C(11)H(23)-melamine/barbituric acid monolayer is transferred back onto a pure water subphase. The kinetics of the recognition and dissociation reaction is experimentally and theoretically investigated. The approximate additive theoretical model developed recently is extended to consider the dissociation kinetics of the interfacial supramolecular complex. The kinetic constants for the recognition and dissociation reactions in the mixed monolayer consisting of 2C(11)H(23)-melamine and 2C(11)H(23)-melamine/barbituric acid complex are determined. It is shown that the kinetic constant of the recognition reaction is nearly independent of temperature, whereas that of the dissociation reaction increases with increasing temperature.  相似文献   
9.
The analysis of the available bubble life times and dead times for the bubble pressure tensiometer BPA-1S shows that dynamic surface tensions can be measured also for surfactant solutions at concentrations many times higher than the corresponding CMC. For the three nonionic surfactants Triton X-100, Triton X-45, and C14EO8 experiments are performed for solutions with a concentration of up to 200 times the CMC (C14EO8). Comparison of the experimental data with micelle kinetics models yields rate constants for the fast micelle dissolution process, which are in a good agreement with values obtained by other experimental methodologies.  相似文献   
10.
The complementary drop and bubble profile analysis and maximum bubble pressure tensiometry are used to measure the dynamic surface tension of aqueous SDS solutions in the presence of hardness salts (CaCl(2) and MgCl(2) in the ratio of 2:1 at concentrations of 6 and 40FH). The presence of hardness salts results in an essential increase of the SDS adsorption activity, which indicates the formation of Ca(DS)(2) and Mg(DS)(2) in the SDS solutions. The surface tension isotherms of SDS in presence of Ca(DS)(2) and Mg(DS)(2) are described using the generalised Frumkin model. The presence of hardness salts accelerates the ageing of SDS solutions as compared with the addition of 0.01 M NaCl due to a faster hydrolysis and hence formation of dodecanol. These results are used to estimate the possible concentration of dodecanol in the studied SDS solutions. The buoyant bubble profile method with harmonic surface oscillations is used to measure the dilational rheology of SDS solutions in presence of hardness salts in the frequency range between 0.005 Hz and 0.2 Hz. The visco-elasticity modulus in the presence of hardness salts is higher as compared with its values in the presence of 0.01 M NaCl additions. The ageing of SDS solutions leads to an essential increase of the visco-elastic modulus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号