首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   5篇
  2018年   1篇
  2017年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Journal of Radioanalytical and Nuclear Chemistry - The IAEA has developed a liquid scintillator-based system for the non-destructive assay of 235U in fresh fuel assemblies. The fast neutron...  相似文献   
2.
Organic electron donors (OEDs) are powerful reducing agents recognized for their potential in the reduction of challenging substrates and in original applications. Nonetheless, their low stability in atmospheric oxygen or over time complicates their manipulation and storage. To overcome these constraints and enhance OED practicality, new air‐ and moisture‐stable aminopyridinium carboxylate and carbonate precursors were synthesized and thermally activated to generate the potent electron donor in situ. Carboxylate adducts proved to be excellent latent OED systems, enabling the facile and efficient reduction of challenging substrates. Their reduction properties were correlated to their structural characteristics by thermogravimetric and spectroscopic analysis.  相似文献   
3.
HIV-1 integrase (IN) is an essential enzyme for viral replication and represents an intriguing target for the development of new drugs. Although a large number of compounds have been reported to inhibit IN in biochemical assays, no drug active against this enzyme has been approved by the FDA so far. In this study, we report, for the first time, the use of the electron-ion interaction potential (EIIP) technique in combination with molecular modeling approaches for the identification of new IN inhibitors. An innovative virtual screening approach, based on the determination of both short- and long-range interactions between interacting molecules, was employed with the aim of identifying molecules able to inhibit the binding of IN to viral DNA. Moreover, results from a database screening on the commercial Asinex Gold Collection led to the selection of several compounds. One of them showed a significant inhibitory potency toward IN in the overall integration assay. Biological investigations also showed, in agreement with modeling studies, that these compounds prevent recognition of DNA by IN in a fluorescence fluctuation assay, probably by interacting with the DNA binding domain of IN.  相似文献   
4.
Pharmacophoresthree-dimensional (3D) arrangements of essential features enabling a molecule to exert a particular biological effectconstitute a very useful tool in drug design both in hit discovery and hit-to-lead optimization process. Two basic approaches for pharmacophoric model generation can be used by chemists, depending on the availability or not of the target 3D structure. In view of the rapidly growing number of protein structures that are now available, receptor-based pharmacophore generation methods are becoming more and more used. Since most of them require the knowledge of the 3D structure of the ligand-target complex, they cannot be applied when no compounds targeting the binding site of interest are known. Here, a GRID-based procedure for the generation of receptor-based pharmacophores starting from the knowledge of the sole protein structure is described and successfully applied to address three different tasks in the field of medicinal chemistry.  相似文献   
5.
The HIV-1 entry process is an important target for the design of new pharmaceuticals for the multidrug therapy of AIDS. A lot of polyanionic compounds, such as polysulfonated and polysulfated, are reported in the literature for their ability to block early stages of HIV-1 replication. Several studies have been performed to elucidate the mechanism of the anti-HIV-1 activity of sulfated polysaccharides and polyanions in general, including binding to cell surface CD4 and interfering with the gp120-coreceptor interaction. Here, we show molecular modeling investigations on ADS-J1, a polyanionic compound with anti-HIV activity that is able to interfere with gp120-coreceptor interactions. Agreeing with experimental data, computer simulations suggested that the V3 loop of gp120 was the preferential binding site for ADS-J1 onto HIV-1. Moreover, mutations induced by the inhibitor significantly changed the stereoelectronic properties of the gp120 surface, justifying a marked drop in the affinity of ADS-J1 toward an ADS-J1-resistant HIV-1 strain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号