首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2009年   1篇
  2006年   2篇
  2004年   2篇
  1975年   2篇
排序方式: 共有7条查询结果,搜索用时 593 毫秒
1
1.
Structure of microparticles in solid-stabilized emulsions   总被引:3,自引:0,他引:3  
Emulsions of oil and water stabilized by adsorbed solid particles are known as solid-stabilized emulsions (often referred to as Pickering emulsions). Using confocal microscopy, we have studied the assembly of colloidal-sized polystyrene particles in poly(dimethylsiloxane)-in-water solid-stabilized emulsions. Monodisperse polystyrene particles, when included in the emulsions at low concentrations, were found to form small patches with local "hexagonal" order, separated by other particle-free domains. Polystyrene particles with different sizes (1 and 4 microm) and different wettability could simultaneously segregate to the emulsion interface; even mixtures of hydrophobic and hydrophilic solid particles were found to simultaneously segregate to the same interface.  相似文献   
2.
The reaction of 2,2′‐Bis(2N‐(1,1′,3,3′‐tetramethyl‐guanidino))diphenylene‐amine (TMG2PA) ( 1 ) with CuI in MeCN results in the formation of [CuII(TMG2PAamid)I] ( 2 ) indicatingthat CuI is the target of an oxidative attack of the N‐H proton of the ligand which itself is converted to molecular hydrogen. In contrast, if [Cu(MeCN)4][PF6] is used as the CuI source, [CuI2(TMGbenz)2][PF6]2 ( 3 ) is obtained instead. The use of the non‐coordinating counterion [PF6] apparently prevents CuI from oxidation but induces itself a cyclisation reaction within the ligand which results in the formation of a benzimidazole‐guanidine ligand.  相似文献   
3.
One interesting aspect of colloidal particles is the formation of colloidal crystals at the 2D and 3D levels. Here we report the dynamics and collapse of colloidal lattices at liquid-liquid interfaces using Pickering emulsions as an experimental template. The colloidal particles oscillate around their equilibrium positions. The short-time diffusion constant (<10 s) of single particles increases with increasing lattice spacing; the oil-phase viscosity has an effect on diffusion only at large interparticle distances. Strikingly, we observe that the equilibrium structure can be disturbed when increasing the output laser intensity in a confocal laser scanning microscope, which leads to the collapse of colloidal lattices in the presence of small laser powers.  相似文献   
4.
Solid-stabilized emulsions have been used as a model system to investigate the dynamics of charged microparticles with diameters of 1.1 microm at oil-water interfaces. Using confocal microscopy, we investigated the influences of interfacial curvature, cluster size, and temperature on the diffusion of solid particles. Our work suggests that a highly curved emulsion interface slows the motion of solid particles. This qualitatively supports the theoretical work by Danov et al. (Danov, K. D.; Dimova, R.; Pouligny, B. Phys. Fluids 2000, 12, 2711); however, the interfacial curvature effect decreases with increasing oil-phase viscosity. The diffusion of multiparticle clusters at oil-water interfaces is a strong function of cluster size and oil-phase viscosity and can be quantitatively related to fractal dimension. Finally, we report the influence of temperature and quantify the diffusion activation energy and friction factor of the particles at the investigated oil-water interfaces.  相似文献   
5.
6.
7.
Particle mobility, aggregate structure, and the mechanism of aggregate growth at the two-dimensional level have been of long-standing interest. Here, we use solid-stabilized emulsions as a model system to investigate the mobility of charged microparticles at poly(dimethylsiloxane) (oil)-water interfaces using confocal laser scanning microscopy. Remarkably, the rate of diffusion of the charged colloidal-sized polystyrene particles at the oil-water interface is only moderately slower than that in the bulk water phase. The ambient diffusion constant of solid particles is significantly reduced from 1.1 x 10(-9) cm2/s to 2.1 x 10(-11) cm2/s when the viscosity of the oil phase increases from 5 cSt to 350 cSt. In addition, we successfully observe the in situ structural formation of solid particles at the oil-water interface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号