首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   7篇
  国内免费   2篇
化学   184篇
晶体学   5篇
数学   9篇
物理学   22篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   13篇
  2007年   13篇
  2006年   11篇
  2005年   14篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   9篇
  2000年   1篇
  1999年   5篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   3篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   13篇
  1984年   9篇
  1983年   4篇
  1982年   4篇
  1981年   8篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   6篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1953年   1篇
  1931年   1篇
  1928年   2篇
  1909年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
1.
A dicarboxylate host (1) binds cationic monosaccharides such as D-glucosamine HCl (2), D-galactosamine-HCl (3), and D-mannosamine-HCl (4) with high affinity (K1 = 8.0 x 10(4)-2.0 x 10(5) M(-1)) in methanol. In circular dichroism (CD) spectroscopy a positive exciton-coupling band was observed near 290 nm; this indicates that the saccharides are recognized by multiple point interactions. Since the corresponding neutral monosaccharides are not significantly bound, one may conclude that complex formation is primarily due to the electrostatic interaction between NH3+ in the guest and one carboxylate in the host and secondarily due to hydrogen-bonding interactions of OH groups with the other carboxylate and/or nitrogen bases. Molar ratio plots and Job plots indicate that host 1 and cationic monosaccharide guests form CD-active, pseudo-cyclic 1:1 complexes at low guest concentration followed by the formation of CD-silent, acyclic 1:2 1-saccharide complexes at high guest concentration. The possible binding modes are discussed in detail on the basis of molecular mechanics calculations and chemical shift changes in 1H NMR spectra. The results of competition experiments with several cationic reference compounds bearing fewer OH groups than 2-4 are consistent with the proposed binding model. Thus, the present study is a rare example of saccharide recognition in a protic solvent, where in general, hydrogen-bonding interactions are rarely useful because of strong solvation energy. These are apparently the strongest saccharide complexes involving noncovalent interactions between host and guest. We believe that the findings are significant as a milestone toward development of new saccharide recognition systems ultimately useful in aqueous solution.  相似文献   
2.
IR spectroscopic and volumetric study under reaction conditions of the mechanism of photocatalytic hydrogen production from gaseous methanol and water revealed that CO2 and H2 were produced by reaction between adsorbed CH3O(ad) and H2O. Another reaction path for H2 production, CH3 OH(ad) → H2 + HCHO, was suggested which is dominant in the absence of water.  相似文献   
3.
Palladium-diethylzinc or palladium-triethylborane catalytically promotes self-allylation of 2-(allyloxy)tetrahydrofurans, 2-(allyloxy)tetrahydropyrans, and their hydroxy derivatives on the rings (ribose, glucose, mannose, deoxyribose, deoxyglucose). All the reactions proceed at room temperature and provide polyhydroxyl products, sharing a structural motif of a homoallyl alcohol, in good to excellent yields with high levels of stereoselectivity. Useful C3-unit elongation, which makes the best use of an allyl ether as a protecting group and a nucleophilic allylation agent, is demonstrated. Mechanisms for the umpolung reaction (of an allyl ether into an allylic anion) and stereoselectivity associated with allylation of aldehydes are discussed.  相似文献   
4.
Without prior activation of allyl alcohols, allylation of a variety of active methylene compounds with allyl alcohols proceeds smoothly at rt-50°C in the presence of catalytic amounts of Pd(OAc)2 (1-10 mol%), Et3B (30-240 mol%), a phosphine ligand (1-20 mol%), and a base (0 to 50-60 mol%).  相似文献   
5.
We describe herein the relationship between the spatial arrangement of self-organized galactose clusters and lectin recognition. beta-Galactose-modified deoxyuridine phosphoramidite was synthesized and applied to solid-phase synthesis to provide 18-, 20-, and 22-mers of site-specifically galactosylated oligodeoxynucleotides (Gal-ODNs). These Gal-ODNs were self-organized through hybridization with the corresponding 18-, 20-, and 22-mers of half-sliding complementary ODNs (hsc-ODNs) to give periodic galactoside clusters. The self-organization of ODNs was confirmed by size exclusion chromatography and gel electrophoresis. The binding of the Gal-clusters to the FITC-labeled RCA(120) lectin was analyzed by monitoring the change in fluorescence intensity. The assembly of 20-mer Gal-ODN with the 20-mer hsc-ODN was strongly and cooperatively recognized by the lectin. The 18-mer assembly was bound more weakly and less cooperatively, and the 22-mer assembly was minimally bound to the lectin. RCA(120) lectin recognized not only the density of galactoside residues, but also the spatial arrangement. The size of the Gal cluster was estimated from the association constant of Gal-ODN with hsc-ODN. The relationship between lectin-recognition and Gal-cluster size is also discussed.  相似文献   
6.
A catalytic system, Pd(OAc)2 (10 mol %)-P(n-Bu)3 (20 mol %)-Et3B (360 mol %), promotes allylic alcohols to undergo the allylation of anisidine-imines of aromatic and aliphatic aldehydes and furnishes homoallylamines in good to moderate yields. The reaction shows unique stereoselectivity, giving anti-isomers selectively. [reaction: see text]  相似文献   
7.
Equilibria concerning picrates of tetraalkylammonium ions (Me4N+, Et4N+, Pr4N+, Bu4N+, Bu3MeN+) in a dichloromethane−water system have been investigated at 25 C. The 1:1 ion-pair formation constants (K IP,o o) in dichloromethane at infinite dilution were conductometrically determined. The distribution constants (K D o) of the ion pairs and the free cations between the solvents were determined by a batch-extraction method. The K IP,o o value varies in the cation sequence, Bu4N+ ≈ Pr4N+ ≈ Et4N+ < Bu3MeN+ < < Me4N+; this trend is explained by the electrostatic cation−anion interaction taking into account the structures of the ion pairs determined by density functional theory calculations. For the ion pairs of the symmetric R4N+ cations, there is a linear positive relationship between log10 K D o and the number of methylene groups in the cation (N CH 2). The ion pair of asymmetric Bu3MeN+ has a higher distribution constant than that expected from the above log10 K D o versus N CH 2 relationship. These cation dependencies of log10 K D o for the ion pairs are explained theoretically by using the Hildebrand-Scatchard equation. For all the cations, the log10 K D o value of the free cation increases linearly with N CH 2; the variation of log10 K D o is discussed by decomposing the distribution constant into the Born-type electrostatic contribution and the non-Born one, and attributed to the latter that is governed by the differences in the molar volumes of the cations. The cation dependencies of the ion-pair extractability and ion pairing in water are also discussed. An erratum to this article can be found at  相似文献   
8.
A unique class of oligothiophene‐based organogelator bearing two crown ethers at both ends was synthesized. This compound could gelatinize several organic solvents, forming one‐dimensional fibrous aggregates. From the observation of circular dichroism, it was confirmed that the helical handedness of the fibrous assembly is controllable by the chirality of 1,2bisammonium guests, thus suggesting that one guest molecule bridges two gelator molecules through the crown–ammonium interaction. Interestingly, we have found that such chirality is created by thermal gelation, whereas it disappears by thixotropic gelation. The new finding implies that the present organogel system is applicable as a reversible switching memory device, featuring memory creation by a heat mode and memory erasing by a mechanical mode.  相似文献   
9.
The catalytic performance of ReOx‐modified Ir metal catalyst in the hydrogenolysis of C–O bonds is strongly dependent on the choice of solvent. The acidic property of the Re species becomes obvious in the alkane solvent, and the hydrogenolysis reaction proceeds mainly by acid‐catalyzed dehydration and the subsequent metal‐catalyzed hydrogenation. The acidic property of the Re species is weakened in water; however, the hydrogenolysis reaction proceeds in water via a direct mechanism involving SN2‐like attack of a hydride species at the interface between Ir and ReOx on the adsorbed Re alkoxide species. This mechanism enabled the selective dissociation of the C–O bond neighboring the CH2OH group.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号