首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2004年   2篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   
2.
The binding of a series of p-alkylbenzamidinium chloride inhibitors to the serine proteinase trypsin over a range of temperatures has been studied using isothermal titration (micro)calorimetry and molecular dynamics simulation techniques. The inhibitors have small structural variations at the para position of the benzamidinium ion. They show small differences in relative binding affinity but large compensating differences in enthalpy and entropy. Binding affinity decreases with increased branching at the first carbon but increases with increasing the length of a linear alkyl substituent, suggesting that steric hindrance and hydrophobic interactions play dominant roles in binding. Structural analysis showed that the backbone of the enzyme was unaffected by the change of the para substituent. In addition, binding does not correlate strongly with octanol/water partition data. To further characterize this system, the change in the heat capacity on binding, the change in solvent-accessible surface area on binding, the effect of inhibitor binding on the hydration of the active site, the pK(a) of His57, and interactions within the catalytic triad have been investigated. Although the changes in inhibitor structure are small, it is demonstrated that simple concepts such as steric hindrance, hydrophobicity, and buried surface area are insufficient to explain the binding data. Other factors, such as access to the binding site and the cost of dehydration of the active site, are of equal or greater importance.  相似文献   
3.
The effect of the amidinium group and the phenyl ring on the thermodynamics of binding of benzamidinium chloride to the serine proteinase trypsin has been studied using isothermal titration calorimetry. Binding studies with benzylammonium chloride, [small alpha]-methylbenzylammonium chloride and benzamide, compounds structurally related to benzamidinium chloride, showed that hydrogen bonding between the amidinium group and the enzyme is primarily enthalpy-driven. Binding of cyclohexylcarboxamidinium chloride and acetamidinium chloride showed that the hydrophobic binding of the phenyl ring in the S1 pocket is primarily entropy-driven and that a rigid, flat hydrophobic binding site for the inhibitor is favourable. The compounds that have been studied over a range of temperatures exhibit a negative change in heat capacity upon binding and enthalpy-entropy compensation, both characteristic of hydrophobic interactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号