首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The electrochemical analysis of tetracyclines was investigated using nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) by cyclic voltammetry and high performance liquid chromatographic with amperometry. Cyclic voltammetry was used to study the electrochemical oxidation of tetracyclines. Comparison experiments were carried out utilizing as-deposited BDD and glassy carbon electrodes. Ni-DIA electrode provided well-resolved oxidative irreversible cyclic voltammograms and the highest current signals among the electrode studied. High performance liquid chromatography (HPLC) with amperometric detection was also studied. The chromatography was performed using a commercially available Inertsil C18 column, with the mobile phase being: 80% phosphate buffer (pH 2.5)-20% acetonitrile and detected at 1.55 V. The methods were validated over the concentration range 0.05-100 ppm with the overall average recoveries from 83.3 to 102.5% and R.S.D. of less than 10%. The proposed method was further applied to analyse shrimp samples.  相似文献   
2.
The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号