首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   34篇
数学   3篇
物理学   4篇
  2017年   1篇
  2013年   3篇
  2012年   4篇
  2011年   10篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1989年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
2.
Anionic group II metal nitrate clusters of the formula [M2(NO3)5], where M2 = Mg2, MgCa, Ca2, and Sr2, are investigated by infrared multiple photon dissociation (IRMPD) spectroscopy to obtain vibrational spectra in the mid-IR region. The IR spectra are dominated by the symmetric and the antisymmetric nitrate stretches, with the latter split into high and low-frequency components due to the distortion of nitrate anion symmetry by interactions with the cation. Density functional theory (DFT) is used to predict geometries and vibrational spectra for comparison to the experimental spectra. Calculations yield two stable isomers: the first one contains two terminal nitrate anions on each cation and a single bridging nitrate (“mono-bridging”), while the second structure features a single terminal nitrate on each cation with three bridging nitrate ligands (“tri-bridging”). The tri-bridging isomer is calculated to be lower in energy than the mono-bridging one for all species. Theoretical spectra of the tri-bridging structure provide a better qualitative match to the experimental infrared spectra of [Mg2(NO3)5] and [MgCa(NO3)5]. However, the profile of the low-frequency ν 3 band for the Mg2 complex suggests a third possible isomer not predicted by theory. The IRMPD spectra of the Ca2 and Sr2 complexes are better reconciled by a weighted summation of the spectra of both isomers suggesting that a mixture of structures is present.  相似文献   
3.
Tandem mass spectrometry and wavelength‐selective infrared photodissociation were used to generate an infrared spectrum of gas‐phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm?1 that are characteristic of phosphate P?O and P? O? R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6‐31+G(d), 6‐311+G(d,p) and 6‐311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
The gas-phase structures of transition-metal dication (Zn(2+) and Cd(2+)) complexes with varying sized crown ethers, 12-crown-4 (12c4), 15-crown-5 (15c5), and 18-crown-6 (18c6), are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and quantum mechanical calculations. The measured spectra span the 750-1600 cm(-1) infrared range, utilizing light generated by a free electron laser, and are compared to predicted spectra calculated at the B3LYP/6-311+G(d,p) or B3LYP/Def2TZVP levels of theory. Spectra with the largest and most flexible crown ether, 18c6, indicate that the crown is highly distorted, wrapping in a tight cage-like structure around both dications studied. The 15c5 adopts a folded orientation for the Zn(2+) complex yet is almost planar when complexed with the larger Cd(2+) ion. The Zn(2+)(12c4) spectrum has bands appearing at lower frequencies than the other systems, consistent with an open conformation such that the metal is exposed, lying above the center of mass of the crown ether ring. The open structures of the Zn(2+)(12c4) and Cd(2+)(15c5) complexes have implications for solvent interactions in the condensed phase. The conformation of each metal-crown complex is highly dependent on metal size, charge, and crown ether flexibility, such that a delicate balance of minimizing the metal-oxygen bond lengths but maximizing the oxygen-oxygen distances arises. These competing influences are reflected in both the spectra and lowest-energy conformations.  相似文献   
5.
Fluorescein (FL) and its derivative 2',7'-dichlorofluoroescein (DCF) are well-known fluorescent dyes used in many biological and biochemical applications. Although extensive studies have been carried out to investigate their chemical and photophysical properties in different solvent media, little is known about their intrinsic behaviors in the gas phase. Here, infrared multiple photon dissociation (IRMPD) action spectra are reported for the three charged prototropic forms of FL and DCF and compared with computed IR spectra from electronic structure calculations. In each case, the measured spectra show good agreement with the calculated spectra of the lowest energy computed conformer. Moreover, the major bands of the monoanion IRMPD spectra show striking similarities to those of the dianions and are quite different from those of the cations. These experimental results clearly indicate that the gaseous monoanions are predominantly deprotonated on the xanthene chromophore, rather than the benzoate deprotonation site favored in solution. Investigations such as this, which provide a better understanding of intrinsic properties of ionic dyes, forms a baseline from which to elucidate solvent effects and will aid the rational design of dyes possessing desirable fluorescence properties.  相似文献   
6.
We report the first IR spectroscopic observation of carboxylate stretching modes in free space, i.e., in the complete absence of solvent or counterions. Gas-phase spectra of a series of benzoate anions have been recorded and compared to condensed-phase spectra, revealing the profound influence of the environment on the symmetric and antisymmetric carboxylate stretch modes.  相似文献   
7.
LetA be aC*-algebra with second dualA″. Let (φ n)(n=1,...) be a sequence in the dual ofA such that limφ n(a) exists for eacha εA. In general, this does not imply that limφ n(x) exists for eachx εA″. But if limφ n(p) exists whenever p is the range projection of a positive self-adjoint element of the unit ball ofA, then it is shown that limφ n(x) does exist for eachx inA″. This is a non-commutative generalisation of a celebrated theorem of Dieudonné. A new proof of Dieudonné’s theorem, for positive measures, is given here. The proof of the main result makes use of Dieudonné’s original theorem.  相似文献   
8.
9.
The structures of gas‐phase, metal chlorate anions with the formula [M(ClO3)2]?, M = Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species with those predicted by density functional theory (DFT) and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO3)2]?. However, for [K(ClO3)2]? the best agreement between experimental and theoretical spectra is obtained from a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6‐311+g(3df) level of theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
10.
The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD spectrum was recorded in a Fourier-transform ion cyclotron resonance mass spectrometer monitoring H-loss as a function of IR frequency. The radical cation was produced by 193-nm UV photoionization of the vapor of corannulene in a 3D quadrupole trap and IR irradiation produces H, H(2), and C(2)H(x) losses. Summing the spectral response of the three fragmentation channels yields the IRMPD spectrum of the radical cation. The spectra were analyzed with the aid of quantum-chemical calculations carried out at various levels of theory. The good agreement of theoretical and experimental spectra for protonated corannulene indicates that protonation occurs on one of the peripheral C-atoms, forming an sp(3) hybridized carbon. The spectrum of the radical cation was examined taking into account distortions of the C(5v) geometry induced by the Jahn-Teller effect as a consequence of the degenerate (2)E(1) ground electronic state. As indicated by the calculations, the five equivalent C(s) minima are separated by marginal barriers, giving rise to a dynamically distorted system. Although in general the character of the various computed vibrational bands appears to be in order, only a qualitative match to the experimental spectrum is found. Along with a general redshift of the calculated frequencies, the IR intensities of modes in the 1000-1250 cm(-1) region show the largest discrepancy with the harmonic predictions. In addition to CH "in-plane" bending vibrations, these modes also exhibit substantial deformation of the pentagonal inner ring, which may relate directly to the vibronic interaction in the radical cation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号