首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10122篇
  免费   1528篇
  国内免费   1388篇
化学   7734篇
晶体学   101篇
力学   678篇
综合类   85篇
数学   1122篇
物理学   3318篇
  2024年   23篇
  2023年   186篇
  2022年   281篇
  2021年   362篇
  2020年   444篇
  2019年   412篇
  2018年   351篇
  2017年   326篇
  2016年   442篇
  2015年   435篇
  2014年   500篇
  2013年   715篇
  2012年   838篇
  2011年   931篇
  2010年   601篇
  2009年   533篇
  2008年   697篇
  2007年   525篇
  2006年   483篇
  2005年   457篇
  2004年   377篇
  2003年   374篇
  2002年   408篇
  2001年   350篇
  2000年   268篇
  1999年   259篇
  1998年   178篇
  1997年   150篇
  1996年   189篇
  1995年   146篇
  1994年   112篇
  1993年   100篇
  1992年   88篇
  1991年   80篇
  1990年   78篇
  1989年   52篇
  1988年   41篇
  1987年   34篇
  1986年   29篇
  1985年   36篇
  1984年   19篇
  1983年   21篇
  1982年   21篇
  1981年   15篇
  1980年   10篇
  1979年   6篇
  1976年   8篇
  1975年   7篇
  1973年   8篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
2.
3.
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding “high-valent” intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O−H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the “high-valent” CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e acceptor.  相似文献   
4.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   
5.
Set-Valued and Variational Analysis - We aim to establish Karush-Kuhn-Tucker multiplier rules involving higher-order complementarity slackness under Hölder metric subregularity. These rules...  相似文献   
6.
Monomeric sarcosine oxidase (mSOx) fusion with the silaffin peptide, R5, designed previously for easy protein production in low resource areas, was used in a biosilification process to form an enzyme layer electrode biosensor. mSOx is a low activity enzyme (10–20 U/mg) requiring high amounts of enzyme to obtain an amperometric biosensor signal, in the clinically useful range <1 mM sarcosine, especially since the Km is >10 mM. An amperometric biosensor model was fitted to experimental data to investigate dynamic range. mSOx constructs were designed with 6H (6×histidine) and R5 (silaffin) peptide tags and compared with native mSOx. Glutaraldehyde (GA) cross‐linked proteins retained ~5 % activity for mSOx and mSOx‐6H and only 0.5 % for mSOx‐R5. In contrast R5 catalysed biosilification on (3‐mercaptopropyl) trimethoxysilane (MPTMS) and tetramethyl orthosilicate (TMOS) particles created a ‘self‐immobilisation’ matrix retaining 40 % and 76 % activity respectively. The TMOS matrix produced a thick layer (>500 μm) on a glassy carbon electrode with a mediated current due to sarcosine in the clinical range for sarcosinemia (0–1 mM). The mSOx‐R5 fusion protein was also used to catalyse biosilification in the presence of creatinase and creatininase, entrapping all three enzymes. A mediated GC enzyme linked current was obtained with dynamic range available for creatinine determination of 0.1–2 mM for an enzyme layer ~800 nm.  相似文献   
7.
8.
This paper reports that the growth of RuOx(110) thin layer growth on Ru(0001) has been investigated by means of scanning tunnelling microscope (STM). The STM images showed a domain structure with three rotational domains of RuOx(110) rotated by an angle of 120℃. The as-grown RuOx(110) thin layer is expanded from the bulk-truncated RuOx(110) due to the large mismatch between RuOx(110) and the Ru(0001) substrate. The results also indicate that growth of RuOx(110) thin layer on the Ru(0001) substrate by oxidation tends first to formation of the Ru-O (oxygen) chains in the [001] direction of RuOx(110).  相似文献   
9.
The paper introduces a special system calibration technology in s-parameters measurement of microwave and millimeter wave devices. The 8-term errors module is built by analyzing the signals flowing in the measurement system. Then the calibration technology using non-standard kits is designed on the base. Finally, the experiment using the calibration technology is introduced.  相似文献   
10.
A lithium(I) coordination polymer has been formed from LiClO4 and the 2,2′‐bipyrimidine (bpym) ligand in which each square pyramidal lithium(I) atom is coordinated in the basal plane by four nitrogen donor atoms derived from two bpym ligands and one water molecule at the apical position. These are connected into a layer structure via hydrogen‐bonding interactions involving the perchlorate anions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号