首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
化学   70篇
数学   5篇
物理学   30篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   5篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   12篇
  2005年   16篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   6篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
1.
2.
Recently several theoretical studies have examined oxygen adsorption on the clean, reduced TiO2(110) surface. However the photocatalytic behavior of TiO2 and the scavenging ability of oxygen are known to be influenced by the presence of surface hydroxyls. In this paper the chemistry of O2 on the hydroxylated TiO2 surface is investigated by means of first-principles total energy calculations and molecular dynamics (MD) simulations. The MD trajectories show a direct, spontaneous reaction between O2 and the surface hydroxyls, thus supporting the experimental hypothesis that the reaction does not necessarily pass through a chemisorbed O2 state. Following this reaction, the most stable chemisorbed intermediates are found to be peroxide species HO2 and H2O2. Although these intermediates are very stable on the short time scale of MD simulations, the energetics suggests that their further transformation is connected to a new 300 K feature observed in the experimental water temperature programmed desorption (TPD) spectrum. The participation of two less stable intermediate states, involving terminal hydroxyls and/or chemisorbed water plus oxygen adatoms, to the desorption process, is not supported by the total energy calculations. Analysis of the projected density of states, however, suggests the possibility that these intermediates have a role in completing the surface oxidation immediately before desorption.  相似文献   
3.
4.
Methanol adsorption on clean and hydrated anatase TiO(2)(001)-1 x 1 is studied using density functional theory calculations and first principles molecular dynamics simulations. It is found that (i) dissociative adsorption is favored on clean TiO(2)(001) at both low and high methanol coverages; (ii) on the partially hydrated surface, methanol dissociation is not affected by the coadsorbed water and can still occur very easily; (iii) the dissociative adsorption energy of methanol is always larger than that of water under similar conditions. This implies that water replacement by methanol is energetically favored, in agreement with recent experimental observations on colloidal anatase nanoparticles.  相似文献   
5.
6.
The reaction of hydrogen sulphide with [Co(H2O)6](BF4)2 and triethylphosphine in the presence of sodium tetraphenylborate or tetrabutylammonium hexafluorophosphate gave the paramagnetic clusters [Co63-S)8(PEt3)6](Y) (Y = BPh4, (1), PF6, (2)). These compounds can be easily reduced by sodium napthalenide to the diamagnetic species [Co63-S)8(PEt3)6] · 2C4H8O (3). The molecular structures of 1 and 3 have been established by single-crystal X-ray diffraction methods. Crystal data: (1) space group P , a = 19.481(9), b = 15.562(7), c = 12.390(b) Å, α = 92.70(8), β = 94.50(7), γ = 94.10(9)°, Z = 2, (3) space group R , a = 11.780(6) Å, α = 92.50(7)°, Z = 1. Both structures were solved by the heavy atom method and refined by full-matrix least-squares techniques to the conventional R factors values of 0.050 for 1 and 0.044 for 3 on the basis of 4251 and 1918 observed reflections, respectively. The two clusters [Co63-S)8)(PEt3)6]1+,0 are isostructural, the inner core consisting of an octahedron of cobalt atoms with all the faces symmetrically capped by triply bridging sulphur atoms. Each metal centre is additionally linked to a triethylphosphine group so that each cobalt atom is co-ordinated by four sulphur atoms and one phosphorus in a distorted square pyramidal environment. The addition of one electron whilst leaving unchanged the geometry of the inner framework, induces small changes in the structural parameters, the average Co---Co and Co---P distances being 2.794 (3) and 2.162 (2) Å for 1 and 2.817 (3) and 2.138 (2) Å for 3 respectively. Electrochemistry in non-aqueous solvents shows the electron-transfer sequence
The tricationic species is stable only in the short time of cyclic voltammetric tests.  相似文献   
7.
The adsorption of cysteine on the (111) surface of gold has been studied by means of periodic supercell density-functional theory calculations. A number of different adsorption modes are examined, including adsorption through the thiol group in either thiolate or disulfide form, and adsorption through both the thiol and amino functional groups. We find that at intermediate coverage densities the latter mode of adsorption is favored, followed by thiolate adsorption at the bridge (slightly displace toward fcc) site. The N-Au and S-Au bond strengths in the amino-thiolate adsorption are estimated to be of the order of 6 and 47 kcal/mol, respectively. The electronic structure of the different systems is analyzed, with focus on the total and projected density of states, as well as on the detailed character of the electronic states at the interface. States near the Fermi energy are found to have a metal-molecule antibonding character, whereas metal-molecule bonding states mostly occur near the lower edge of the Au-d band.  相似文献   
8.
CO2, COS, and SCNPh react under very mild conditions with the copper(I)-tetrahydroborate complexes [(PR3)2Cu(η2-BH4)] (R = Ph, Cy); CO2 and COS give the complexes [(PR3)2Cu(η2-O2CH)] and [(PR3)2Cu(η2-OSCH)] respectively, whereas SCNPh gives the η2-dithiocarbamate complexes [(PR3)2Cu-(η2-S2CNHPh)]. Addition of PPh3 under CO2 to solutions of [(PPh3)2Cu-(η2-BH4)] gives [(PPh3)3Cu(η1-O2CH)] while addition of PPh3 and NBu4ClO4 under CO2 gives [(PPh3)3Cu(η-O2CH)Cu(PPh3)3] ClO4.  相似文献   
9.
We report a density functional theory study of the electronic properties of n-alkanedithiols (CnS2, with n=4, 8 and 12) sandwiched between two Au(111) infinite slab electrodes. We investigate the influence of the distance between the two electrodes and of the molecular chain length, tilt angle, and coverage on the local density of states (LDOS) at the Fermi energy (E(f)). We find that the (small) value of the LDOS at Ef near the center of the molecular wires--a quantity that is related to the tunneling current--is mainly determined by the length n of the alkane chains: it originates from the tails of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) which are broadened by the interaction with the electrodes, and decays exponentially with the length of the molecular wire. This opens a nonresonance tunneling channel for charge transport at small bias voltages. While the length of the hydrocarbon chain appears to be the determining factor, the tilt angle of the molecular wires with respect to the electrode surfaces, and therefore the distance between these, has a small influence on the LDOS at the center of the molecule, while the effect of coverage can be ignored. The picture which emerges from these calculations is totally consistent with a through-bond tunneling mechanism.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号