首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Hydrosilylation is an important process, not only in the silicon industry to produce silicon polymers, but also in fine chemistry. In this review, the development of rhenium-based catalysts for the hydrosilylation of unsaturated bonds in carbonyl-, cyano-, nitro-, carboxylic acid derivatives and alkenes is summarized. Mechanisms of rhenium-catalyzed hydrosilylation are discussed.  相似文献   
2.
Organic electron donors (OEDs) are powerful reducing agents recognized for their potential in the reduction of challenging substrates and in original applications. Nonetheless, their low stability in atmospheric oxygen or over time complicates their manipulation and storage. To overcome these constraints and enhance OED practicality, new air‐ and moisture‐stable aminopyridinium carboxylate and carbonate precursors were synthesized and thermally activated to generate the potent electron donor in situ. Carboxylate adducts proved to be excellent latent OED systems, enabling the facile and efficient reduction of challenging substrates. Their reduction properties were correlated to their structural characteristics by thermogravimetric and spectroscopic analysis.  相似文献   
3.
Deprotonation of the MnI NHC‐phosphine complex fac‐[MnBr(CO)32P,C‐Ph2PCH2NHC)] ( 2 ) under a H2 atmosphere readily gives the hydride fac‐[MnH(CO)32P,C‐Ph2PCH2NHC)] ( 3 ) via the intermediacy of the highly reactive 18‐e NHC‐phosphinomethanide complex fac‐[Mn(CO)33P,C,C‐Ph2PCHNHC)] ( 6 a ). DFT calculations revealed that the preferred reaction mechanism involves the unsaturated 16‐e mangana‐substituted phosphonium ylide complex fac‐[Mn(CO)32P,C‐Ph2P=CHNHC)] ( 6 b ) as key intermediate able to activate H2 via a non‐classical mode of metal‐ligand cooperation implying a formal λ5‐P–λ3‐P phosphorus valence change. Complex 2 is shown to be one of the most efficient pre‐catalysts for ketone hydrogenation in the MnI series reported to date (TON up to 6200).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号