首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Gold electrodes were chemically modified with thioctic acid monolayer designed to mimic biological ion-channel membranes. The technique was then used in the determination of alkali, alkaline earth, thallium(I), and lanthanum metal cations as analytes. Cyclic voltammograms (CV) of [Fe(CN)6]3− an electroactive marker, were measured in the presence of the various types of analyte cations. In the absence of the analyte cation, electrostatic repulsion between the marker anions and the carboxylate groups of the receptor monolayer hindered the approach of the marker anion to the electrode surface and hence hindered its reduction. The modified electrodes responded well to the metal cations except the alkali metal cations. The sensors could detect the trivalent cation La3+ at concentrations as low as 10−8 M. The response of the sensor to the metal cations increase in the order alkali metal3+ can be discriminated in the ratio 1:100. This makes it possible to determine the trivalent ion in a sample matrix containing monovalent and divalent cations. Thallium(I) ion showed marked deviation in its response as compared to monovalent ions of the alkali metals. The ion-channel sensor based on self-assembled monolayer of thioctic acid therefore offers a potential alternative technique for the selective determination of metal ions.  相似文献   
2.
Liquid membranes incorporating thioctic acid as a carrier to mimic an active transport system for alkaline earth metals has been described. A transport cell, operating on the same principle as the Schulman Bridge was used. It has been demonstrated that such a system is capable of transporting alkaline earth metals against a proton gradient, as driving force. The potential of thioctic acid to complex and transport these metal ions particularly Mg2+, Ca2+, and Ba2+ was verified. Furthermore, this transport phenomenon was extended to some different barium salts (Cl?, Br? NO3 ?, and SCN?) to determine the effect of nature of anion on the transport of the Ba2+ ions. The order of the transport rate was found to be Ba2+ > Ca2+ > Mg2+ which is inconsistent with the stability of coordination to the carboxyl group. The rate of transport of Ba2+ ions were found to decrease with the anion type in the order SCN? > Br? > NO3 ? > Cl? which is related to the extent of hydration of the anions.  相似文献   
3.
The photophysical and photochemical properties of tetraaminophthalocyanine complexes of lutetium and zinc covalently linked to polyacrylic acid were studied alongside those of unsubstituted zinc phthalocyanine within the same polymeric fiber matrix. All three phthalocyanines within the solid fiber matrices showed photoactivity by the generation of singlet oxygen as was observed in solution. The fluorescence behaviors of the composite fibers equally parallel those in solution. For the unsubstituted zinc phthalocyanine composite, the fiber showed fluorescence quenching on interaction with gaseous nitrogen dioxide similar to that in DMF and, thus could be a promising nanofabric material in developing optoelectronic devices that are responsive to the gas.  相似文献   
4.
Dysprosium bis-phthalocyanine and monomeric phthalocyanines of erbium and lutetium with non-peripheral phenoxy substituents have been synthesized using two different preparative routes. Photophysical studies on these phthalocyanines revealed that the triplet states of dysprosium and erbium are not populated while the monomeric phthalocyanine complex of lutetium is populated with a quantum yield of 0.83 and a lifetime of 25 μs in DMSO. It was further found that the phthalocyanine complex of lutetium was capable of photochemical generation of singlet state molecular oxygen with yield of 0.71 in THF, thus a promising photosensitizer. However, the three phthalocyanine molecules have very low fluorescence quantum yields of less than 0.01.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号