首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
化学   8篇
力学   11篇
物理学   11篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
排序方式: 共有30条查询结果,搜索用时 375 毫秒
1.
2.
3.
4.
Eringen’s nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler–Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.  相似文献   
5.
Here, for the first time, the real‐time and broadband manipulation of terahertz (THz) waves are acquired by introducing a multifunctional graphene‐based coding metasurface (GBCM). The designed structure consists of subwavelength patterned graphene units whose operational statuses can be dynamically switched between two digital states of “0” and “1”. By engineering the spatial distribution of chemical potentials across the GBCM, various scattering patterns having single, two, four, and numerous reflection beams are elaborately achieved just within one planar structure. To compute the far‐field pattern of GBCM, an inverse discrete Fourier transform (IDFT) is established, providing a fast and efficient design method. The proposed GBCM provides a low reflection bellow ?10 dB over a broad frequency band ranging from 1 THz to 1.9 THz. In addition, the metasurface retains its low reflection behavior in a wide range of incident wave angles for both TE and TM polarizations. According to conformal invariance of graphene sheets, the stealth property of GBCM is well preserved while wrapping around a curved object. The proposed technique of real‐time scattering manipulation leads to multifunctional THz devices, opening new routes contributing to numerous applications such as imaging and stealth technology.  相似文献   
6.
In this article, an atomistic model is developed to study the buckling and vibration characteristics of single-layered graphene sheets (SLGSs). By treating SLGSs as space-frame structures, in which the discrete nature of graphene sheets is preserved, they are modeled using three-dimensional elastic beam elements for the bonds. The elastic moduli of the beam elements are determined via a linkage between molecular mechanics and structural mechanics. Based on this model, the critical compressive forces and fundamental natural frequencies of single-layered graphene sheets with different boundary conditions and geometries are obtained and then compared. It is indicated that the compressive buckling force decreases when the graphene sheet aspect ratio increases. At low aspect ratios, the increase of aspect ratios will result in a significant decrease in the critical buckling load. It is also indicated that increasing aspect ratio at a given side length results in the convergence of buckling envelops associated with armchair and zigzag graphene sheets. The influence of boundary conditions will be studied for different geometries. It will be shown that the influence of boundary conditions is not significant for sufficiently large SLGSs.  相似文献   
7.
8.
9.
A numerical solution methodology is proposed herein to investigate the nonlinear forced vibrations of Euler–Bernoulli beams with different boundary conditions around the buckled configurations. By introducing a set of differential and integral matrix operators, the nonlinear integro-differential equation that governs the buckling of beams is discretized and then solved using the pseudo-arc-length method. The discretized governing equation of free vibration around the buckled configurations is also solved as an eigenvalue problem after imposing the boundary conditions and some complicated matrix manipulations. To study forced and nonlinear vibrations that take place around a buckled configuration, a Galerkin-based numerical method is applied to reduce the partial integro-differential equation into a time-varying ordinary differential equation of Duffing type. The Duffing equation is then discretized using time differential matrix operators, which are defined based on the derivatives of a periodic base function. Finally, for any given magnitude of axial load, the pseudo -arc-length method is used to obtain the nonlinear frequencies of buckled beams. The effects of axial load on the free vibration, nonlinear, and forced vibrations of beams in both prebuckling and postbuckling domains for the lowest three vibration modes are analyzed. This study shows that the nonlinear response of beams subjected to periodic excitation is complex in the postbuckling domain. For example, the type of boundary conditions significantly affects the nonlinear response of the postbuckled beams.  相似文献   
10.
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号