首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   30篇
晶体学   1篇
物理学   10篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2008年   2篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1978年   3篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Copper nitrite reductases contain both an electron-transfer type 1 Cu site and a catalytic type 2 Cu site. We have mutated one of the type 2 copper ligating histidines to observe the effect on catalytic turnover. This mutation has created a unique site where Cu is ligated by 2 His Nepsilon2 atoms alone.  相似文献   
2.
A new and direct approach to verify surface heterogeneity as the microscopic origin of contact-angle hysteresis is demonstrated. IR-visible sum-frequency-generation spectroscopy (SFG) was used to selectively probe the molecules at the interface of an alkyl-side-chain polymer [poly(vinyl n-octadecyl carbamate-co-vinyl acetate)] with water. The spectra indicate that in contact with water, the polymer surface is heterogeneous (having areas of differing surface energies). This evidence of surface heterogeneity supports the hysteresis observed in the advancing and receding contact angles of the polymer surface with water. The same measurements made for the chemically and structurally similar surface of an octadecyltrichlorosilane self-assembled monolayer indicates a homogeneous surface at the water interface. In this case, contact-angle hysteresis measurements implicate surface roughness as the cause of hysteresis. Atomic force microscopy measurements of roughness for these surfaces further support our conclusions. The polymer-water interface was probed using SFG at above-ambient temperatures, and an order-to-disorder transition (ODT) of alkyl side chains at the interface was observed, which closely follows the melting of crystalline side chains in the bulk. This transition explains the increased wettability of the polymer, by water, when the temperature is raised above the bulk melting temperature. Furthermore, the irreversibility of this ODT suggests that the disordered polymer-water interface is the thermodynamic equilibrium state, whereas the before-heating structure of this interface is a kinetically hindered metastable state.  相似文献   
3.
Surface-sensitive infrared-visible sum frequency generation spectroscopy (SFG) in total internal reflection geometry has been used to study the structure of poly(vinyl n-octadecyl carbamate-co-vinyl acetate) (PVNODC) or poly(octadecyl acrylate) (PA-18) in contact with a deuterated or hydrogenated polystyrene (dPS or hPS) layer. SFG spectra from the PVNODC (or PA-18)/hPS interface show methyl and methylene peaks corresponding to PVNODC (or PA-18) and phenyl peaks corresponding to the PS. Analysis suggests that the methyl groups are tilted at angles less than 30 degrees with respect to the surface normal. The presence of a strong methylene peak suggests the PVNODC alkyl side chains contain more gauche defects at the PS/PVNODC interface in comparison to PVNODC (or PA-18)/air interfaces. On heating, the SFG intensity from the PS/PA-18 interface drops sharply near the bulk melting temperature (T(m)) of PA-18. Interestingly, a similar drop in SFG signal is also observed for the PS phenyl groups. This demonstrates the ability of the phenyl group at the PS/PA-18 interface to rearrange itself upon the solid-to-liquid transition of the PA-18 alkyl side chain, at a temperature well below the bulk PS glass transition temperature. For PS/PVNODC interfaces, the drop in SFG intensity is gradual and in agreement with the three broad transitions of PVNODC observed in the bulk.  相似文献   
4.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
5.
6.
Alajlani  Muaaz  Shiekh  Abid  Hasnain  Shahida  Brantner  Adelheid 《Chromatographia》2016,79(21):1527-1532

Bacillus subtilis strain BIA was used for the production of bioactive lipopeptides. Different extraction and purification methods were assayed as liquid–liquid extraction, and acid and ammonium sulfate precipitation followed by TLC, SPE, and gel filtration. Active fractions were further purified using RP-HPLC. The molecular mass of the purified product from HPLC was determined through Tris-Tricine SDS-PAGE and MALDI–TOF-MS. The results revealed that Bacillus subtilis strain BIA produced surfactin and iturin like compounds. Coproduction of surfactin and iturin like compounds by this strain is a remarkable trait for a potential biocontrol agent. This paper also includeds techniques that have been developed for the optimal and convenient extraction of bioactive lipopeptides from microbial origin.

  相似文献   
7.
Total luminescence yield of toluene and mesitylene, isolated in rare-gas matrices, has been measured as a function of excitation energy in the energy range covering the absorption region of both host and guest. Energy transfer from the host to the dopant is apparent. An increase in the luminescence yield is observed at the host exciton state. Luminescence excitation spectrum of pure mesitylene is presented.  相似文献   
8.
9.
[reaction: see text] This paper describes the application of peroxide-based oxidants in the Pd(OAc)(2)-catalyzed acetoxylation and etherification of arene and alkane C-H bonds. Oxone in acetic acid and/or methanol proved particularly effective, and these transformations were applied to a wide variety of substrates.  相似文献   
10.
Absorption and luminescence excitation spectra of solid benzene and benzene isolated in rare-gas matrices have been studied. The absolute absorption cross sections of various electronic band systems including the Rydberg region of C6H6 are obtained using transmission spectra of C6H6-doped rare-gas films of different thickness. An interpretation of the structure in the Rydberg region is given in terms of two Rydberg series using the quantum defect method. A comparative study has been made of luminescence excitation spectra of matrix-isolated and of pure C6H6. The luminescence excitation spectra of matrix-isolated benzene gives information on the internal conversion and medium-induced vibrational relaxation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号