首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   2篇
物理学   7篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2000年   2篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Microstructure determines the mechanical and transport properties of fruit tissues. One important characteristic of the microstructure is the relative volume fraction of gas-filled intercellular spaces, i.e., the tissue microporosity. Quantification of this microporosity is fundamental for investigating the relationship between gas transfer and various disorders in fruit.  相似文献   
2.
MRI thermometry methods are usually based on the temperature dependence of the proton resonance frequency. Unfortunately, these methods are very sensitive to the phase drift induced by the instability of the scanner which prevents any temperature mapping over long periods of time. A general method based on 3D spatial modelling of the phase drift as a function of time is presented. The MRI temperature measurements were validated on gel samples with uniform and constant temperature and with a linear temperature gradient. In the case of uniform temperature conditions, correction of the phase drift proved to be essential when long periods of acquisition were required, as bias could reach values of up to 200 degrees C in its absence. The temperature uncertainty measured by MRI was 1.2 degrees C in average over 290 min. This accuracy is coherent with the requirements for food applications especially when thermocouples are useless.  相似文献   
3.
We present results on investigations of the dynamics of the glass forming ortho-terphenyl (oTP) confined in nanoporous silica. Calorimetry experiments showed that the glass transition temperature of the confined liquid, Tgconf, has a non-trivial pore size dependence and is strongly affected by surface interactions. Fluid-wall interactions introduce gradients of structural relaxation times in the pores. The molecules at the surface of the pores are slowed down compared to those at the center of the pores. We focus here on a pore diameter range (7 σ< d < 12 σ, where σ is the molecular diameter), where a large variety of dynamical behavior were observed. Depending on surface properties of the confined media, T gconf may be smaller or larger than the bulk one. In a quite attractive matrix with a pore size of around 7 nm, the structural relaxation times gradient is important enough to allow the observation of two glass transitions for the same liquid. Effects of fluid wall interactions on the short time dynamics at high temperature were also investigated by quasielastic neutron scattering. The self and collective motions exhibit well above the bulk melting point the same dependence on fluid-wall interactions as at Tg.  相似文献   
4.
The transverse relaxation signal from vegetal cells can be described by multi-exponential behaviour, reflecting different water compartments. This multi-exponential relaxation is rarely measured by conventional MRI imaging protocols; mono-exponential relaxation times are measured instead, thus limiting information about of the microstructure and water status in vegetal cells. In this study, an optimised multiple spin echo (MSE) MRI sequence was evaluated for assessment of multi-exponential transverse relaxation in fruit tissues. The sequence was designed for the acquisition of a maximum of 512 echoes. Non-selective refocusing RF pulses were used in combination with balanced crusher gradients for elimination of spurious echoes. The study was performed on a bi-compartmental phantom with known T2 values and on apple and tomato fruit. T2 decays measured in the phantom and fruit were analysed using bi- and tri-exponential fits, respectively. The MRI results were compared with low field non-spatially resolved NMR measurements performed on the same samples.  相似文献   
5.
Summary The eluent flow through a fixed bed of a strong anion-exchanger Q Hyper D/F packing has been characterized by mean of the residence time distribution and the separation conditions of acid whey proteins have been established. Myoglobin under non-retaining conditions was used as a test protein because its molecular weight was close to that of α-lactalbumin, the target protein of this study. In the interstitial velocity range of 44–350 cm h−1 a constant reduced height equivalent to a theoretical plate of 13 was observed. Nearly pure fractions of the five main acid whey proteins were obtained on the preparative scale for a gradient slope of NaCl 1 mM mL−1, in the pH range of 6–8 and an interstitial velocity of 127 cm h−1 (flow rate of 2 mL min−1). A separation focused on a pure fraction of α-lactalbumin was achieved at pH 7.5 and was effective up to an interstitial velocity of 500 cm h−1 (flow rate of 8 mL min−1). An indepth characterization of α-lactalbumin by electrospray ionization—mass spectrometry showed that 15% of α-lactalbumin was lactosylated both in the collected fraction and in the acid whey protein concentrate used as feed.  相似文献   
6.
Two-dimensional (2D)-SE, 2D-GE and tri-dimensional (3D)-GE two-point T(1)-weighted MRI methods were evaluated in this study in order to maximize the accuracy of temperature mapping of bread dough during thermal processing. Uncertainties were propagated throughout each protocol of measurement, and comparisons demonstrated that all the methods with comparable acquisition times minimized the temperature uncertainty to similar extent. The experimental uncertainties obtained with low-field MRI were also compared to the theoretical estimations. Some discrepancies were reported between experimental and theoretical values of uncertainties of temperature; however, experimental and theoretical trends with varying parameters agreed to a large extent for both SE and GE methods. The 2D-SE method was chosen for further applications on prefermented dough because of its lower sensitivity to susceptibility differences in porous media. It was applied for temperature mapping in prefermented dough during chilling prior to freezing and compared locally to optical fiber measurements.  相似文献   
7.
The aim of this study was to test the ability of magnetic resonance imaging (MRI) technique to characterize gonad development and to determine the sex of live Pacific oysters through their shells. A preliminary nuclear magnetic resonance (NMR) relaxometry study was conducted to characterize T1 and T2 NMR relaxation parameters for the main oyster organs. This showed that T1-weighted MRI sequences were most appropriate to optimize contrasts between tissues in images. The results showed that gray levels of gonads in images acquired with gradient-echo sequence were variably affected by T2* weighting effect. However, the ovaries systematically gave a hypersignal in spin-echo T1-weighted images, and stack histograms of female oysters showed a peak well separated from that of male oysters. An automated method is proposed to quantify the development of oysters and their gonad maturation and to identify their sex.  相似文献   
8.
Nanoparticles possessing poly(ethylene glycol) (PEG) chains on their surface have been described as blood persistent drug delivery system with potential applications for intravenous drug administration. Considering the importance of protein interactions with injected colloidal dug carriers with regard to their in vivo fate, we analysed plasma protein adsorption onto biodegradable PEG-coated poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(-caprolactone) (PCL) nanoparticles employing two-dimensional gel electrophoresis (2-D PAGE). A series of corona/core nanoparticles of sizes 160–270 nm were prepared from diblock PEG-PLA, PEG-PLGA and PEG-PCL and from PEG-PLA:PLA blends. The PEG Mw was varied from 2000–20 000 g/mole and the particles were prepared using different PEG contents. It was thus possible to study the influence of the PEG corona thickness and density, as well as the influence of the nature of the core (PLA, PLGA or PCL), on the competitive plasma protein adsorption, zeta potential and particle uptake by polymorphonuclear (PMN) cells. 2-D PAGE studies showed that plasma protein adsorption on PEG-coated PLA nanospheres strongly depends on the PEG molecular weight (Mw) (i.e. PEG chain length at the particle surface) as well as on the PEG content in the particles (i.e. PEG chain density at the surface of the particles). Whatever the thickness or the density of the corona, the qualitative composition of the plasma protein adsorption patterns was very similar, showing that adsorption was governed by interaction with a PLA surface protected more or less by PEG chains. The main spots on the gels were albumin, fibrinogen, IgG, Ig light chains, and the apolipoproteins apoA-I and apoE. For particles made of PEG-PLA45K with different PEG Mw, a maximal reduction in protein adsorption was found for a PEG Mw of 5000 g/mole. For nanospheres differing in their PEG content from 0.5 to 20 wt %, a PEG content between 2 and 5 wt % was determined as a threshold value for optimal protein resistance. When increasing the PEG content in the nanoparticles above 5 wt % no further reduction in protein adsorption was achieved. Phagocytosis by PMN studied using chemiluminescence and zeta potential data agreed well with these findings: the same PEG surface density threshold was found to ensure simultaneously efficient steric stabilization and to avoid the uptake by PMN cells. Supposing all the PEG chains migrate to the surface, this would correspond to a distance of about 1.5 nm between two terminally attached PEG chains in the covering ‘brush’. Particles from PEG5K-PLA45K, PEG5K-PLGA45K and PEG5K-PCL45K copolymers enabled to study the influence of the core on plasma protein adsorption, all other parameters (corona thickness and density) being kept constant. Adsorption patterns were in good qualitative agreement with each other. Only a few protein species were exclusively present just on one type of nanoparticle. However, the extent of proteins adsorbed differed in a large extent from one particle to another. In vivo studies could help elucidating the role of the type and amount of proteins adsorbed on the fate of the nanoparticles after intraveinous administration, as a function of the nature of their core. These results could be useful in the design of long circulating intravenously injectable biodegradable drug carriers endowed with protein resistant properties and low phagocytic uptake.  相似文献   
9.
In this study, magnetic resonance imaging (MRI) was applied to study the structural aspects of the tomato fruit. The main study was performed on tomatoes (cv. Tradiro) using a 0.2-T electromagnet scanner. Spin-echo images were acquired to visualize the tomato macrostructure. The air bubble content in tissues was evaluated by exploiting susceptibility effects using multiple gradient echo images. The microstructure was further studied by measuring spin–spin (T2) and spin–lattice (T1) relaxation time distributions. Nuclear magnetic resonance relaxometry, macro vision imaging and chemical analysis were used as complementary and independent experimental methods in order to emphasize the MRI results. MRI images showed that the air bubble content varied between tissues. The presence of gas was attested by macro vision images. Quantitative imaging showed that T2 and T1 maps obtained by MRI reflected the structural differences between tomato tissues and made it possible to distinguish between them. The results indicated that cell size and chemical composition contribute to the relaxation mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号