首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   3篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Non-destructive analysis of chlorpheniramine maleate (CPM), pharmaceutical tablets, and granules was conducted by chemometrics-assisted attenuated total reflectance infrared spectroscopy (ATR-IR). For tablets, an optimum PLSR model with eight latent factors was obtained from area-normalized and standard normal variate (SNV) pretreated ATR-IR spectral data with correlation coefficients (R2) of calibration and cross-validation of 0.9716 and 0.9602, respectively. The model capability for the 42 test set samples was proven with R2 between the reference and model prediction values of 0.9632, and a root-mean-square error of prediction (RMSEP) of 1.7786. The successive PLSR model for granules was constructed from SNV and first derivative pretreated ATR-IR spectral data with two latent factors and correlation coefficients (R2) of calibration and cross-validation of 0.9577 and 0.9450, respectively.  相似文献   
2.
Differentiated thyroid cancer (DTC), arising from thyroid follicular epithelial cells, is the most common type of thyroid cancer. Despite the well-known utilization of radioiodine treatment in DTC, i.e., iodine-131, radioiodine imaging in DTC is typically performed with iodine-123 and iodine-131, with the current hybrid scanner performing single photon emission tomography/computed tomography (SPECT/CT). Positron emission tomography/computed tomography (PET/CT) provides superior visualization and quantification of functions at the molecular level; thus, lesion assessment can be improved compared to that of SPECT/CT. Various types of cancer, including radioiodine-refractory DTC, can be detected by 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), the most well-known and widely used PET radiopharmaceutical. Several other PET radiopharmaceuticals have been developed, although some are limited in availability despite their potential clinical utilizations. This article aims to summarize PET radiopharmaceuticals in DTC, focusing on molecular pathways and applications.  相似文献   
3.
A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [(18)F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [(18)F]-fluoride in various biological media. The in vivo behaviour of the [(18)F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [(18)F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, Subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [(18)F]-fluoride (over a period of 4 h) which accumulated in bone. [(18)F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (Subcutaneous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with (18)F.  相似文献   
4.
Xanthones are significant bioactive compounds and secondary metabolites in mangosteen pericarps. A xanthone is a phenolic compound and versatile scaffold that consists of a tricyclic xanthene-9-one structure. A xanthone may exist in glycosides, aglycones, monomers or polymers. It is well known that xanthones possess a multitude of beneficial properties, including antioxidant activity, anti-inflammatory activity, and antimicrobial properties. Additionally, xanthones can be used as raw material and/or an ingredient in many food, pharmaceutical, and cosmetic applications. Although xanthones can be used in various therapeutic and functional applications, their properties and stability are determined by their extraction procedures. Extracting high-quality xanthones from mangosteen with effective therapeutic effects could be challenging if the extraction method is insufficient. Although several extraction processes are in use today, their efficiency has not yet been rigorously evaluated. Therefore, selecting an appropriate extraction procedure is imperative to recover substantial yields of xanthones with enhanced functionality from mangosteens. Hence, the present review will assist in establishing a precise scenario for finding the most appropriate extraction method for xanthones from mangosteen pericarp by critically analyzing various conventional and unconventional extraction methods and their ability to preserve the stability and biological effects of xanthones.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号