首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   24篇
化学   438篇
力学   2篇
数学   55篇
物理学   95篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   16篇
  2019年   11篇
  2018年   6篇
  2017年   7篇
  2016年   12篇
  2015年   19篇
  2014年   18篇
  2013年   36篇
  2012年   53篇
  2011年   57篇
  2010年   34篇
  2009年   30篇
  2008年   39篇
  2007年   32篇
  2006年   32篇
  2005年   18篇
  2004年   13篇
  2003年   13篇
  2002年   14篇
  2001年   7篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1993年   3篇
  1992年   5篇
  1990年   4篇
  1989年   4篇
  1986年   3篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1980年   4篇
  1979年   3篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1954年   1篇
  1932年   2篇
  1927年   1篇
  1923年   1篇
  1915年   1篇
排序方式: 共有590条查询结果,搜索用时 27 毫秒
1.
2.
Screening of 400 Streptomyces strains for biotransformation of the natural lignan matairesinol led to the identification of Streptomyces sp. LS136, capable of producing a single metabolite in moderate yields. Isolation and purification by preparative HPLC, followed by structural analyses by LC-MS and NMR, established the structure as matairesinol-4-O-rhamnoside. This bacterial strain was also used for rhamnosylation of the abundant natural lignans, hydroxymatairesinol and secoisolariciresinol.  相似文献   
3.
Cyclic Oligomers of (R)-3-Hydroxybutanoic Acid: Preparation and Structural Aspects The oligolides containing three to ten (R)-3-hydroxybutanoate (3-HB) units (12-through 40-membered rings 1–8 ) are prepared from the hydroxy acid itself, its methyl ester, its lactone (‘monolide’), or its polymer (poly(3-HB), mol. wt. ca. 106 Dalton) under three sets of conditions: (i) treatment of 3-HB ( 10 ) with 2,6-dichlorobenzoyl chloride/pyridine and macrolactonization under high dilution in toluene with 4-(dimethylamino)pyridine (Fig. 3); (ii) heating a solution (benzene, xylene) of the β-lactone 12 or of the methyl ester 13 from 3-HB with the tetraoxadistanna compound 11 as trans-esterification catalyst (Fig. 4); (iii) heating a mixture of poly(3-HB) and toluene-sulfonic acid in toluene/1,2-dichloroethane for prolonged periods of time at ca. 100° (Fig. 6). In all three cases, mixtures of oligolides are formed with the triolide 1 being the prevailing component (up to 50% yield) at higher temperatures and with longer reaction times (thermodynamic control, Figs. 3–6). Starting from rac-β-lactone rac- 12 , a separable 3:1 to 3:2 mixture of the l,u- and the l,l-triolide diasteroisomers rac- 14 and rac- 1 , respectively, is obtained. An alternative method for the synthesis of the octolide 6 is also described: starting from the appropriate esters 15 and 17 and the benzyl ether 16 of 3-HB, linear dimer, tetramer, and octamer derivatives 18–23 are prepared, and the octamer 23 with free OH and CO2H group is cyclized (→ 6 ) under typical macrolactonization conditions (see Scheme). This ‘exponential fragment coupling protocol’ can be used to make higher linear oligomers as well. The oligolides 1–8 are isolated in pure form by vacuum distillation, chromatography, and crystallization, an important analytical tool for determining the composition of mixtures being 13C-NMR spectroscopy (each oligolide has a unique and characteristic chemical shift of the carbonyl C-atom, with the triolide 1 at lowest, the decolide 8 at highest field). The previously published X-ray crystal structures of triolide 1 , pentolide 3 , and hexolide 4 (two forms), as well as those of the l,u-triolide rac- 14 , of tetrolide ent- 2 , of heptolide 5 , and of two modifications of octolide 6 described herein for the first time are compared with each other (Figs. 7–10 and 12–15, Tables 2 and 5–7) and with recently modelled structures (Tables 3 and 4, Fig. 11). The preferred dihedral angles τ1 to τ4 found along the backbone of the nine oligolide structures (the hexamer and the larger ones all have folded rings!) are mapped and statistically evaluated (Fig. 16, Tables 5–7). Due to the occurrence of two conformational minima of the dihedral angle O? CO? CH2? CH (τ3 = + 151 or ?43°), it is possible to locate two types of building blocks for helices in the structures at hand: a right-handed 31 and a left-handed 21 helix; both have a ca. 6 Å pitch, but very different shapes and dispositions of the carbonyl groups (Fig. 17). The 21 helix thus constructed from the oligolide single-crystal data is essentially superimposable with the helix derived for the crystalline domains of poly(3-HB) from stretched-fiber X-ray diffraction studies. The absence of the unfavorable (E)-type arrangements around the OC? OR bond (‘cis-ester’) from all the structures of (3-HB) oligomers known so far suggests that the model proposed for a poly(3-HB)-containing ion channel (Fig. 2) must be modified.  相似文献   
4.
5.
A new method is proposed for routine determinations of oxidizable and reducible substances. A mathematical development and criticism of the method of Schierjott has led to a fundamental modification of the earlier experimental conditions (ratio of the oxidized/reduced forms of the reagent at the start and end of the redox reaction). This improvement allows a considerable increase in the sensitivity of the method and is particularly advantageous for the determination of substances of low reactivity, e.g. carbohydrates. Other advantages are a reduction in the quantity and thus cost of the necessary reagent, and a decreased risk of precipitation of the substances involved. The mathematical treatment of the proposed version allows a rigorous theoretical comparison of the two methods. An evaluation of the quality of the approximations introduced into both methods is also proposed, based on the calculation of the deviation (absolute and relative differences) of approximated values from theoretical values. The final part of the work deals with optimization of the different principal parameters, i.e. concentration of the reagent, temperature and reaction time.  相似文献   
6.
Hybrid quantum mechanical-molecular mechanics (dynamics) were performed on flavin reductase (Fre) and flavodoxin reductase (Fdr), both from Escherichia coli. Each was complexed with riboflavin (Rbf) or flavin mononucleotide (FMN). During 50 ps trajectories, the relative energies of the fluorescing state (S1) of the isoalloxazine ring and the lowest charge transfer state (CT) were assessed to aid prediction of fluorescence lifetimes that are shortened due to quenching by electron transfer from tyrosine. The simulations for the four cases display a wide range in CT–S1 energy gap caused by the presence of phosphate, other charged and polar residues, water, and by intermolecular separation between donor and acceptor. This suggests that the Gibbs energy change (ΔG0) and reorganization energy (λ) for the electron transfer may differ in different flavoproteins.  相似文献   
7.
The antioxidant activity, in terms of radical scavenging capacity, of altogether 15 different lignans was measured by monitoring the scavenging of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The effect of differences in skeletal arrangement or the degree of oxidation of the lignans was investigated in a structure-activity relationship study. A large variety in the radical scavenging capacities of the different lignans was observed and related to some structural features. Lignans with catechol (3,4-dihydroxyphenyl) moieties exhibited the highest radical scavenging capacity, while the corresponding guaiacyl (3-methoxy-4-hydroxyphenyl) lignans showed a slightly weaker scavenging capacity. In addition, the butanediol structure was found to enhance the activity, whereas a higher degree of oxidation at the benzylic positions decreased the activity. Additionally, the readily available lignans (-)-secoisolariciresinol, a mixture of hydroxymatairesinol epimers and (-)-matairesinol were studied in more detail, including kinetic measurements and identification of oxidation products in the reactions with DPPH and ABAP (2,2-azobis(2-methylpropionamidine) dihydrochloride. The identification of reaction products, by GC-MS, HPLC-MS and NMR spectroscopy, showed that dimerisation of the two aromatic moieties was the major radical termination reaction. Also, the formation of adducts was a predominant reaction in the experiments with ABAP. The kinetic data obtained from the reactions between the lignans and DPPH indicated a complex reaction mechanism.  相似文献   
8.
Dissociative recombination (DR) of the dimer ion (NO)(2) (+) has been studied at the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm. The experiments were aimed at determining details on the strongly enhanced thermal rate coefficient for the dimer, interpreting the dissociation dynamics of the dimer ion, and studying the degree of similarity to the behavior in the monomer. The DR rate reveals that the very large efficiency of the dimer rate with respect to the monomer is limited to electron energies below 0.2 eV. The fragmentation products reveal that the breakup into the three-body channel NO+O+N dominates with a probability of 0.69+/-0.02. The second most important channel yields NO+NO fragments with a probability of 0.23+/-0.03. Furthermore, the dominant three-body breakup yields electronic and vibrational ground-state products, NO(upsilon=0)+N((4)S)+O((3)P), in about 45% of the cases. The internal product-state distribution of the NO fragment shows a similarity with the product-state distribution as predicted by the Franck-Condon overlap between a NO moiety of the dimer ion and a free NO. The dissociation dynamics seem to be independent of the NO internal energy. Finally, the dissociation dynamics reveal a correlation between the kinetic energy of the NO fragment and the degree of conservation of linear momentum between the O and N product atoms. The observations support a mechanism in which the recoil takes place along one of the NO bonds in the dimer.  相似文献   
9.
A new method has been developed for the determination of the isotope abundance ratios of deuterium, D, and oxygen-18, 18O, in water vapor (and water) using selected ion flow tube mass spectrometry (SIFT-MS). H3O+ ions are injected into the helium carrier gas where they associate with the H2O and HDO molecules in a sample of water introduced into the carrier gas. The D and 18O contents of the product cluster ions H8DO4+ and H9(18)OO3+ at m/e = 74 and 75, respectively, are determined by reference to the majority cluster ion H9O4+ at m/e = 73. Allowance is made for the contribution of the H8(17)OO3+ ions to the m/z = 74 ions. Absolute isotopic ratios are measured within seconds without the need for precalibration of the SIFT-MS instrument, currently to an accuracy of better than 2%.  相似文献   
10.
A library of novel dipeptide-analogue ligands based on the combination of tert-butoxycarbonyl(N-Boc)-protected alpha-amino acids and chiral vicinal amino alcohols were prepared. These highly modular ligands were combined with [[RuCl(2)(p-cymene)](2)] and the resulting metal complexes were screened as catalysts for the enantioselective reduction of acetophenone under transfer hydrogenation conditions using 2-propanol as the hydrogen donor. Excellent enantioselectivity of 1-phenylethanol (up to 98 % ee) was achieved with several of the novel catalysts. Although most of the ligands contained two stereocenters, it was demonstrated that the absolute configuration of the product alcohol was determined by the configuration of the amino acid part of the ligand. Employing ligands based on L-amino acids generated S-configured products, and catalysts based on D-amino acids favored the formation of the R-configured alcohol. The combination N-Boc-L-alanine and (R)-phenylglycinol (Boc-L-Ab) or its enantiomer (N-Boc-D-alanine and (S)-phenylglycinol, Boc-D-Aa) proved to be the best ligands for the reduction process. Transfer hydrogenation of a number of aryl alkyl ketones were evaluated and excellent enantioselectivity, up to 96 % ee, was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号