首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2022年   1篇
  2021年   2篇
  2011年   1篇
  2009年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Herein, we present a molecular design of chrysene-based deep-blue emissive materials ( TC , TpPC , TpXC , and TmPC ), in which chrysene as a core is functionalized with different triphenylamine moieties to realize a fine-tuning deep-blue fluorescence with superior electroluminescent (EL) performance. The photophysical analyses and density functional theory (DFT) calculations disclose that TC , TpPC , and TpXC possess HLCT characteristics with intense deep-blue emission in the solid-state, good hole-transporting ability, and high thermal and electrochemical stabilities. They are successfully employed as non-doped emitters in simple structured OLEDs (ITO/PEDOT : PSS : NF/emitter/TPBi/LiF : Al). In particular, TC -based device emits a deep-blue light with an emission peak at 446 nm and CIE color coordinates of (0.148, 0.096), a maximum external quantum efficiency (EQEmax) of 4.31%, and a low turn-on voltage of 2.8 V.  相似文献   
2.
3.

Abstract  

A new series of xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line is examined to determine the relationship between the structural properties and the biological activity of these compounds—the 3-D quantitative structure–activity relationship (3D-QSAR)—using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best CoMFA and CoMSIA models were obtained using the atom-based alignment of 33 compounds, 22 training compounds and 11 tested compounds, and these give desirable statistics; those for the CoMFA standard model were: r cv2 = 0.691, r 2 = 0.998, S press = 0.178, s = 0.014 and F = 1080.765, while CoMSIA combined steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields: r cv2 = 0.600, r 2 = 0.988, S press = 0.206, s = 0.034 and F = 284.433. The 3D-QSAR models calculated satisfactory test set activities. The 3D-QSAR contour plots correlated strongly with the experimental data for the binding topology. For this reason, these results would be beneficial for predicting affinities with the compounds of interest, and they are advantageous for guiding the design and synthesis of new and more effective anticancer agents.  相似文献   
4.
Abstract  A new series of xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line is examined to determine the relationship between the structural properties and the biological activity of these compounds—the 3-D quantitative structure–activity relationship (3D-QSAR)—using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best CoMFA and CoMSIA models were obtained using the atom-based alignment of 33 compounds, 22 training compounds and 11 tested compounds, and these give desirable statistics; those for the CoMFA standard model were: r cv2 = 0.691, r 2 = 0.998, S press = 0.178, s = 0.014 and F = 1080.765, while CoMSIA combined steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields: r cv2 = 0.600, r 2 = 0.988, S press = 0.206, s = 0.034 and F = 284.433. The 3D-QSAR models calculated satisfactory test set activities. The 3D-QSAR contour plots correlated strongly with the experimental data for the binding topology. For this reason, these results would be beneficial for predicting affinities with the compounds of interest, and they are advantageous for guiding the design and synthesis of new and more effective anticancer agents. Graphical abstract   A new and more effective anticancer agent of xanthone derivatives against the oral human epidermoid carcinoma (KB) cell line, as investigated by CoMFA and CoMSIA analysis  相似文献   
5.
Outbreaks of hand, foot, and mouth disease (HFMD) that occur worldwide are mainly caused by the Coxsackievirus-A16 (CV-A16) and Enterovirus-A71 (EV-A71). Unfortunately, neither an anti-HFMD drug nor a vaccine is currently available. Rupintrivir in phase II clinical trial candidate for rhinovirus showed highly potent antiviral activities against enteroviruses as an inhibitor for 3C protease (3Cpro). In the present study, we focused on designing 50 novel rupintrivir analogs against CV-A16 and EV-A71 3Cpro using computational tools. From their predicted binding affinities, the five compounds with functional group modifications at P1′, P2, P3, and P4 sites, namely P1′-1, P2-m3, P3-4, P4-5, and P4-19, could bind with both CV-A16 and EV-A71 3Cpro better than rupintrivir. Subsequently, these five analogs were studied by 500 ns molecular dynamics simulations. Among them, P2-m3, the derivative with meta-aminomethyl-benzyl group at the P2 site, showed the greatest potential to interact with the 3Cpro target by delivering the highest number of intermolecular hydrogen bonds and contact atoms. It formed the hydrogen bonds with L127 and K130 residues at the P2 site stronger than rupintrivir, supported by significantly lower MM/PB(GB)SA binding free energies. Elucidation of designed rupintrivir analogs in our study provides the basis for developing compounds that can be candidate compounds for further HFMD treatment.  相似文献   
6.
Negative thermal expansion (NTE) behavior has roused wide interest for the control of thermomechanical properties of functional materials. Although NTE behaviors have been found in kinds of compounds, it remains challenging for polymers to achieve intrinsic NTE property. In this work, we systematically studied the conformational change of dibenzocyclooctadiene (DBCOD) derivatives between chair (C) and twist-boat (TB) forms based on density-functional theory (DFT) calculations, and found clear evidence of the relationship between the structure of DBCOD units and the thermal contraction behavior of the related polymers. In order to obtain the polymer with NTE property, two conditions should be met for the thermal contracting DBCOD related units as follows: (i) the TB conformation can turn into C conformation as the temperature increases, and (ii) the volume of C conformation is smaller than that of TB conformation. This rule should offer a guidance to exploration of the new intrinsic NTE polymers in the future.  相似文献   
7.
Abstract  Comparative molecular field analysis (CoMFA) and quantum chemical calculations were performed on cycloguanil (Cyc) derivatives of the wild type and the quadruple mutant (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) of Plasmodium falciparum dihydrofolate reductase (PfDHFR). The represented CoMFA models of wild type ( and r 2 = 0.985) and mutant type ( and r 2 = 0.979) can describe the differences of the Cyc structural requirements for the two types of PfDHFR enzymes and can be useful to guide the design of new inhibitors. Moreover, the obtained particular interaction energies between the Cyc and the surrounding residues in the binding pocket indicated that Asn108 of mutant enzyme was the cause of Cyc resistance by producing steric clash with p-Cl of Cyc. Consequently, comparing the energy contributions with the potent flexible WR99210 inhibitor, it was found that the key mutant residue, Asn108, demonstrates attractive interaction with this inhibitor and some residues, Leu46, Ile112, Pro113, Phe116, and Leu119, seem to perform as second binding site with WR99210. Therefore, quantum chemical calculations can be useful for investigating residue interactions to clarify the cause of drug resistance. Graphical Abstract  CoMFA steric contour maps of Cyc derivatives against the quadruple mutant PfDHFR. Electrostatic van der Waals surface interaction of Cyc and the key resistance residue Asn108.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号