首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2022年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

The unintentional presence of even trace amounts of certain foods constitutes a major hazard for those who suffer from food allergies. For many food industries, product and raw ingredient surveillance forms part of their risk assessment procedures. This may require the detection of multiple allergens in a wide variety of matrices. Mass spectrometry offers a possible solution for the quantification of multiple allergens in a single analysis. The capability of MS to quantify many peptides from a complex protein digestion is well known. However, a lack of matrix certified reference materials has made the optimisation of extraction and digestion conditions for multiplexed allergen quantification difficult to assess. Here, we report a systematic study, using preliminary screening followed by a Design of Experiments approach, to find the optimal buffer and digestion conditions for detecting milk and egg protein markers in a model processed food matrix. Five of the most commonly used buffers, two chaotropic reagents and two reducing reagents were assessed for the optimal extraction of multiple protein markers. While the choice of background buffer had little impact, the use of chaotropic and reducing reagents showed significant benefits for the extraction of most proteins. A full factorial design experiment was applied to the parameters shown to have a significant impact on protein recovery. These studies suggest that a single optimal set of extraction conditions enabling the quantitative recovery of all proteins is not easily achieved. Therefore, although MS is capable of the simultaneous quantification of many peptides in a single run, greater consideration of protein extraction is required before these are applied for multiplex allergen quantification in food matrices.

Graphical abstract

  相似文献   
2.
Tritordeum results from the crossbreeding of a wild barley (Hordeum chilense) species with durum wheat (Triticum turgidum spp. turgidum). This hexaploid crop exhibits agronomic and rheological characteristics like soft wheat, resulting in an innovative raw material to produce baked goods. We applied a gel-based proteomic approach on refined flours to evaluate protein expression differences among two widespread tritordeum cultivars (Aucan and Bulel) taking as the reference semolina and flour derived from a durum and a soft wheat cvs, respectively. The products of in vitro digestion of model breads were analyzed to compare bio-accessibility of nutrients and mapping tritordeum bread resistant peptides. Significant differences among the protein profiles of the four flours were highlighted by electrophoresis. The amino acid bio-accessibility and the reducing sugars of tritordeum and wheat breads were comparable. Tritordeum cvs had about 15% higher alpha-amino nitrogen released at the end of the duodenal simulated digestion than soft wheat (p < 0.05). Bulel tritordeum flour, bread and digested bread had about 55% less R5-epitopes compared to the soft wheat. Differences in protein expression found between the two tritordeum cvs reflected in diverse digestion products and allergenic and celiacogenic potential of the duodenal peptides. Proteomic studies of a larger number of tritordeum cvs may be successful in selecting those with good agronomical performances and nutritional advantages.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号