首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   19篇
晶体学   2篇
力学   1篇
物理学   2篇
  2022年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   6篇
  2011年   6篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2002年   1篇
  1987年   1篇
排序方式: 共有24条查询结果,搜索用时 265 毫秒
1.
CdS quantum dots can be self-assembled on high surface area nanocrystalline TiO2 electrodes; spectroscopic and photoelectrochemical studies indicate that the size, and hence the absorption edge, of the CdS particles can be controlled; efficient photosensitization of the TiO2 electrode by the Q-particles has been achieved.  相似文献   
2.
A single molecular heterobimetallic complex, [Co2Ti(μ3‐O)(TFA)6(THF)3] (1) [TFA = trifluoroacetate, THF = tetrahydrofuran], was synthesized, structurally and spectroscopically characterized and implemented as a single‐source precursor for the preparation of CoTiO3–CoO composite thin films by aerosol‐assisted chemical vapour deposition (AACVD). The precursor complex was prepared by interaction of Co(OAc)2.4H2O [OAc = (CH3COO?)] with Ti(iso‐propoxide)4 in the presence of trifluoroacetic acid in THF, and was analysed by melting point, CHN, FT‐IR, single‐crystal X‐ray diffraction and thermogravimetric analysis. The precursor complex thermally decomposed at 480 °C to give a residual mass corresponding to a CoTiO3–CoO composite material. Good‐quality crystalline CoTiO3–CoO composite thin films deposited at 500 °C by AACVD and characterized through powder X‐ray diffraction and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy show that the crystallites have a rose‐flower‐like morphology with an average petal size in the range of 2–6 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
Carbon emissions from industrial sources are of major global concern, especially contributions from the steel manufacturing process which accounts for the majority of emissions. Typical blast furnace gases consist of CO2 (20‐25%), CO (20‐25%), H2 (3‐5%) and N2 (40‐50%) and trace amounts of other gases. It is demonstrated that gas mixtures with these compositions can be used at atmospheric pressure to grow carbon nanotubes (CNTs) by chemical vapor deposition (CVD) on to steel substrates, which act as catalysts for CNT growth. Computational modelling was used to investigate the CNT growth conditions inside the CVD chamber. The results show that industrial waste pollutant gases can be used to manufacture materials with significant commercial value, in this case CNTs.  相似文献   
4.
The use of CO(2) for the preparation of value-added compounds has dramatically increased due to increased global warming concerns. We herein report an electrochemical cell containing a copper cathode and a magnesium anode that effectively converts epoxides and carbon dioxide to cyclic carbonates under mild electrochemical conditions at atmospheric pressure.  相似文献   
5.
Diesters of ortho-hydroxybenzoic acid (salicylic acid) made with glutaric, adipic, and pimelic acids are the monomers of some potential drug candidates for aspirin patches. Collision-induced dissociation (CID) spectra of negative ion derived from these compounds show a 120-Da 'neutral loss' specific to the ortho isomers. In contrast, the anions derived from diesters of meta- and para-hydroxybenzoic acids show a 138-Da loss for an elimination of elements of hydroxybenzoic acid by a charge-remote mechanism. Deuterium labeling studies confirmed that the hydrogen atom transferred for hydroxybenzoic acid loss originates specifically from the alpha position of the dicarboxylic acid moiety. Although all spectra showed a peak at m/z 137, a charge-mediated process specific for the ortho compounds renders it the most prominent peak in the spectra of ortho compounds. Appropriate deuterium labeling experiments demonstrated that the hydrogen atom transferred for the formation of the m/z 137 ion in ortho compounds is specifically derived from the alpha position of the dicarboxylic acid moiety.  相似文献   
6.
Thin mesoporous films of α-Fe(2)O(3) have been prepared on conducting glass substrates using layer-by-layer self-assembly of ca. 4 nm hydrous oxide nanoparticles followed by calcining. The electrodes were used to study the oxygen evolution reaction (OER) in the dark and under illumination using in situ potential-modulated absorption spectroscopy (PMAS) and light-modulated absorption spectroscopy (LMAS) combined with impedance spectroscopy. Formation of surface-bound higher-valent iron species (or "surface trapped holes") was deduced from the PMAS spectra measured in the OER onset region. Similar LMAS spectra were obtained at more negative potentials in the onset region of photoelectrochemical OER, indicating involvement of the same intermediates. The impedance response of the mesoporous α-Fe(2)O(3) electrodes exhibits characteristic transmission line behavior that is attributed to slow hopping of holes, probably between surface iron species. Frequency-resolved PMAS and LMAS measurements revealed slow relaxation behavior that can be related to the impedance response and that indicates that the lifetime of the intermediates (or trapped holes) involved in the OER is remarkably long.  相似文献   
7.
We report a facile one-pot, three-step synthesis of N-(4-(2-aminopyridin-4-yl)thiazol-2-yl)-2-phenylacetamides via condensation of 2-p-methoxybenzylamino-4-acetylpyridine with phenylacetylthioureas.  相似文献   
8.
In the negative‐ion collision‐induced dissociation mass spectra of most organic sulfonates, the base peak is observed at m/z 80 for the sulfur trioxide radical anion (SO3–·). In contrast, the product‐ion spectra of a few sulfonates, such as cysteic acid, aminomethanesulfonate, and 2‐phenylethanesulfonate, show the base peak at m/z 81 for the bisulfite anion (HSO3). An investigation with an extensive variety of sulfonates revealed that the presence of a hydrogen atom at the β‐position relative to the sulfur atom is a prerequisite for the formation of the bisulfite anion. The formation of HSO3 is highly favored when the atom at the β‐position is nitrogen, or the leaving neutral species is a highly conjugated molecule such as styrene or acrylic acid. Deuterium‐exchange experiments with aminomethanesulfonate demonstrated that the hydrogen for HSO3 formation is transferred from the β‐position. The presence of a peak at m/z 80 in the spectrum of 2‐sulfoacetic acid, in contrast to a peak at m/z 81 in that of 3‐sulfopropanoic acid, corroborated the proposed hydrogen transfer mechanism. For diacidic compounds, such as 4‐sulfobutanoic acid and cysteic acid, the m/z 81 ion can be formed by an alternative mechanism, in which the negative charge of the carboxylate moiety attacks the α‐carbon relative to the sulfur atom. Experiments conducted with deuterium‐exchanged and deuterium‐labeled analogs of sulfocarboxylic acids demonstrated that the formation of the bisulfite anion resulted either from a hydrogen transfer from the β‐carbon, or from a direct attack by the carboxylate moiety on the α‐carbon. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
Collision-induced dissociation of anions derived from ortho-alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO(2) undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-1 position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-1 position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at m/z 77 for the phenyl anion and m/z 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at m/z 137 for an alkene loss. The spectra of meta and para compounds show a peak at m/z 92 for the distonic anion produced by the homolysis of the O--C bond. Moreover, a small peak at m/z 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   
10.
We have developed an efficient synthesis of novel racemic spiropyrrolidine-tetralones via an unexpected ring-contraction reaction of a 4-disubstituted piperidine to 3-disubstituted pyrrolidine. We suggest that intramolecular quaternization of the piperidine nitrogen of compound 7 occurs to form a bridged bicyclic quaternary ammonium salt intermediate 10. The ring opening of 10 with cyanide resulted in pyrrolidine 9. The synthesis of racemic spiropyrrolidine-tetralone 15 is described as well as the related spiropiperidine-indanone, 1b.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号