首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2008年   3篇
  2005年   2篇
  2004年   2篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Straight-through microchannel (MC) emulsification is a novel technique for formulating monodisperse emulsions using an array of micrometer-sized channels vertical to the surface of a silicon plate (a straight-through MC). We studied the effects of the type and physical properties of the dispersed oil phase and of the surfactant concentration on droplet formation from a straight-through MC by experiments and computational fluid dynamics (CFD) simulations. Monodisperse oil-in-water emulsions with coefficients of variation below 4% were formulated from an oblong straight-through MC using silicone oils, tetradecane, medium-chain triglyceride, soybean oil, and liquid paraffin as the oil phase. At oil viscosities (eta(d)) lower than a threshold value of 100 mPa s, the values of the resultant droplet diameter (d(ex)) gradually decreased with increasing eta(d), whereas they were not affected by the surfactant concentration. Conversely, at eta(d) higher than the threshold value, the d(ex) values significantly increased with increasing eta(d), and they were affected by the surfactant concentration. An analysis on the basis of droplet formation time and interfacial tension clarified that the trends in d(ex) at eta(d) above the threshold value would be caused by the significant decrease in the dynamic interfacial tension during droplet formation. We thus discovered that the dynamic interfacial tension is also a parameter affecting the d(ex) along with eta(d) in straight-through MC emulsification. CFD simulations using a three-dimensional (3D) model including a straight-through MC confirmed successful formation of micrometer-sized droplets for the above-mentioned oils. The experimental and CFD results for the resultant droplet size were compared using the dimensionless droplet diameter (d, droplet diameter/channel equivalent diameter). The d(CFD) values agreed well with the d(ex) values at eta(d) below the threshold value of 100 mPa s for all the experiment systems and at eta(d) above the threshold value for the experiment systems that did not contain a surfactant.  相似文献   
2.
We have proposed a novel microchannel (MC) structure for formulating monodisperse emulsions. The emulsification device is a silicon array of microfabricated, asymmetric through-holes with a slit and a circular channel (an asymmetric straight-through MC). The asymmetric through-holes of a uniform size stably yielded monodisperse emulsions with average droplet diameters of 35-41 mum and coefficients of variation of less than 2% by forcing the to-be-dispersed phase into the continuous phase via the through-holes. Their asymmetry enabled the stable formation of monodisperse emulsion droplets by spontaneous transformation, even using a to-be-dispersed phase with a very low viscosity below 1 mPa s. Additionally, the asymmetric straight-through MC with a high-density through-hole layout has the potential for high-throughput formulation of monodisperse emulsions.  相似文献   
3.
We recently proposed a technique for preparing monodisperse emulsions with a coefficient of variation below 5% from a silicon array of micrometer-sized channels perpendicular to the plate surface, named a straight-through microchannel (MC). This study involved three-dimensional computational fluid dynamics (CFD) simulations to calculate the formation of an oil-in-water (O/W) emulsion droplet from straight-through MCs with circular and elliptic cross sections. The CFD results demonstrated that the oil phase that passed through the elliptic MCs exceeding a threshold aspect ratio between 3 and 3.5 was cut off spontaneously into a small droplet with a diameter of approximately 40 microm. Sufficient space for water at the channel exit had to be maintained for successful droplet formation. The formation and shrinkage of a neck inside the channel caused an increased pressure difference inside the channel and an increased velocity value near the neck. The pressure and velocity values at the neck drastically changed, and the neck was cut off instantaneously just before the completion of droplet formation. This process was triggered by a gradually increased pressure difference between the circular neck and inflating oil phase. The findings obtained in this paper provide useful numerical and visual information about the droplet formation phenomena from the straight-through MCs. The CFD results were verified by the experimental results, showing that the CFD approach can help design a suitable channel structure.  相似文献   
4.
We investigated dynamic interactions between oppositely charged small unilamellar vesicles using positively charged vesicles containing 1,2-dioleoyl-3-trimethylammonium-propane or 3beta-[N-(N('),N(')-dimethylaminoethane)-carbamoyl] cholesterol and negatively charged vesicles containing L-alpha-phosphatidyl-DL-glycerol. Aggregation, lipid bilayer mixing, contents mixing and contents leakage were systematically examined using optical density measurements, fluorescence resonance energy transfer assays, fluorescence quenching assays, light-scattering analyses, and freeze-fracture transmission electron microscopy. The oppositely charged vesicles aggregated immediately. Lipid mixing was observed, but there was no mixing of the contents. The vesicle aggregates disaggregated spontaneously after several minutes. The surface potential of the disaggregated vesicles was neutralized. From these results, we infer that the lipids in the external monolayers were exchanged between the oppositely charged vesicles while the internal monolayers remained intact. The two types of cationic lipids used exhibited different speeds of disaggregation.  相似文献   
5.
A novel technique called the "lipid-coated ice droplet hydration method" is presented for the preparation of giant vesicles with a controlled size between 4 and 20 microm and entrapment yields for water-soluble molecules of up to about 30%. The method consists of three main steps. In the first step, a monodisperse water-in-oil emulsion with a predetermined average droplet diameter between 4 and 20 microm is prepared by microchannel emulsification, using sorbitan monooleate (Span 80) and stearylamine as emulsifiers and hexane as oil. In the second step, the water droplets of the emulsion are frozen and separated from the supernatant hexane solution by precipitation, followed by a removal of the supernatant and followed by the replacement of Span 80 by using a hexane solution containing egg yolk phosphatidylcholine, cholesterol, and stearylamine (5:5:1, molar ratio). This procedure is performed at -10 degrees C to keep the water droplets of the emulsion in a frozen state and thereby to avoid extensive water droplet coalescence. In the third step, hexane is evaporated at -4 to -7 degrees C and an external water phase is added to the remaining mixture of lipids and water droplets to form giant vesicles that have an average size in the range of that of the initial emulsion droplets (4-20 microm). The entrapment yield and the lamellarity of the vesicles obtained depend on the lipid/water droplet ratio and on the composition of the external water phase. At high lipid/water droplet ratio, the giant vesicles have a thicker membrane (indicating multilamellarity) and a higher entrapment yield than in the case of a low lipid/water droplet ratio. The highest entrapment yield ( approximately 35%) is obtained if the added external water phase contains preformed unilamellar egg phosphatidylcholine vesicles with an average diameter of 50 nm. The addition of these small vesicles minimizes the water droplet coalescence during the third step of the vesicle preparation, thereby decreasing the extent of release of water-soluble molecules originally present in the water droplets. The GVs prepared can be extruded through polycarbonate membranes to yield large unilamellar vesicles with about 100 nm diameter. This size reduction, however, leads to a decrease in the entrapment yield to about 12% due to solute leakage from the vesicles during the extrusion process.  相似文献   
6.
The crosslinking processes of aqueous poly(vinyl alcohol) (PVA) by γ‐ray irradiation were studied by viscometry, dynamic and static light scattering (DLS and SLS), as well as size exclusion chromatography (SEC). Increases in the intrinsic viscosity ([η]), molecular weight (Mw), hydrodynamic radius (Rh), and radius of gyration (Rg), and a decrease in second virial coefficient (A2) were observed after γ‐ray irradiation. However, both the values of [η] and A2 for irradiated PVA fell below the data of unirradiated PVA solutions, suggesting a conformational change of PVA chains after γ‐ray irradiation. This structural change of PVA as a result of γ‐ray irradiation was also indicated by the decreases in Rg/Rh from 1.5 to 1.39 by SLS and DLS, and in Mark–Houwink exponent αη from 0.54 to 0.26 by SEC‐Viscometry. The broadening of the Mw distribution (MWD) as indicated by the polydispersity index increased from 2.2 to 6.5 because of γ‐ray irradiation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 214–221, 2000  相似文献   
7.
We developed a microfluidic device to form monodisperse droplets with high productivity by anisotropic elongation of a thread flow, defined as a threadlike flow of a dispersed liquid phase in a flow of an immiscible, continuous liquid phase. The thread flow was anisotropically elongated in the depth direction in a straight microchannel with a step, where the microchannel depth changed. Consequently, the elongated thread flow was given capillary instability (Rayleigh-Plateau instability) and was continuously transformed into monodisperse droplets at the downstream area of the step in the microchannel. We examined the effects of the flow rates of the dispersed phase and the continuous phase on the droplet formation behavior, including the droplet diameter and droplet formation frequency. The droplet diameter increased as the fraction of the dispersed-phase flow rate relative to the total flow rate increased and was independent of the total flow rate. The droplet formation frequency proportionally increased with the total flow rate at a constant dispersed-phase flow rate fraction. These results are explained in terms of a mechanism similar to that of droplet formation from a cylindrical liquid thread flow by Rayleigh-Plateau instability. The microfluidic device described was capable of forming monodisperse droplets with a 160-microm average diameter and 3-microm standard deviation at a droplet formation frequency of 350 droplets per second from a single thread flow. The highest total flow rate achieved was 6 mL/h using the present device composed of a straight microchannel with a step. We also demonstrated parallel droplet formation by anisotropic elongation of multiple thread flows; the process was applied to form W/O and O/W droplets. The highly productive droplet formation process presented in this study is expected to be useful for future industrial applications.  相似文献   
8.
We recently proposed a novel technique for preparing monodisperse emulsions using an array of microfabricated through-holes with an oblong section; we called this array a straight-through microchannel (MC). This paper reports how the slot aspect ratio of the straight-through MC affects droplet formation characteristics. Straight-through MCs with different slot aspect ratios and equivalent diameters of about 20 microm were used. Experimental observation showed that slot aspect ratios exceeding a threshold of approximately 3 were needed to successfully prepare monodisperse emulsions with coefficients of variation below 2%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号