首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
化学   81篇
数学   2篇
物理学   10篇
  2015年   1篇
  2013年   8篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1939年   2篇
  1937年   1篇
  1935年   5篇
  1934年   7篇
  1933年   3篇
  1932年   5篇
  1923年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
A new technique has been developed to prepare a highly filled epoxy-montmorillonite (MMT) nanocomposite using an organically modified MMT. Composites with clay content up to 70 wt.% exhibit unusual transparency, which is related to the spatial distribution of the mineral nanodomains. Dispersion of the layered silicate within the crosslinked epoxy matrix was verified using X-ray diffraction pattern, revealing layer spacings of 30 and 70 Å. Examination of these materials by scanning electron microscopy and transmission electron microscopy showed that intercalates have wholly layered morphology at all scales, oriented parallel to the surface of the specimen and have good wetting to the silicate surface by the epoxy matrix. Silicate lamellae intercalated with epoxy resin assembled into a cluster of about 50-120 nm thickness. These clusters assembled into superclusters with an average thickness of 300 nm. Studies by the Vickers hardness test of an epoxy-MMT nanocomposite containing 60 wt.% MMT indicated that the diamond pyramid hardness was 10-29 kg/mm2.  相似文献   
2.
Tendon functions by transmitting tensile loads from muscle to bone. Morphologically, it can be described as a macromolecular multicomposite material, basically consisting of collagen fibrils held together by a soft, hydrated matrix material. Recently, tendon has been deformed beyond the "in vivo" elastic limit and by cyclical loading systematically damaged. Using high-resolution electron microscopy, decomposition of the collagen fibril into subfibrils (15 nm diameter) and microfibrils (3.5 nm diameter) has been noted. The interfacial adhesion between such units is strongly dependent on age, and is probably related with crosslinking phenomena observed by biochemical methods. In addition, tendon collagen contains a considerable amount of water throughout the entire structure which strongly affects its overall mechanical behavior. The various bound states of water have been identified using primarily dynamic mechanical spectroscopy coupled with more conventional methods of structural characterization.Published in Mekhanika Polimerov, No. 4, pp. 693–701, July–August, 1976.  相似文献   
3.
A hierarchical structural model for liquid-crystalline polyester reinforced with short glass fibers has been determined by using injection-molded bars. The gradient structure showed similar orientations between the glass fibers and the molecular orientation of the matrix. In the fiber-reinforced composites, the core failed prior to the skin by matrix cracking and transverse fiber pull-out as evidenced by the initial growth of parabolic cracks in the core. In the 30 wt% composite this was followed by complex cooperative phenomena involving fiber breakage, debonding, pull-out, and matrix deformation in the skin. The 50 wt% composite failed prematurely due to inadequate fiber/matrix interactions in the skin structure. Acoustic emission coupled with microscopy provided mechanistic insight throughout this work into the amount and intensity of specific failure mechanisms.  相似文献   
4.
Layer‐multiplying coextrusion was used in conjunction with isothermal recrystallization to study the confined crystallization of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride‐tetrafluoroethylene (PVDF‐TFE) using polycarbonate (PC) and polysulfone (PSF) as confining materials. Three layered systems were produced (PC/PVDF, PSF/PVDF, and PC/PVDF‐TFE) with layer thicknesses ranging from 525 to 28 nm. The crystal morphology was affected by both layer thickness and recrystallization temperature. Specifically, increased recrystallization temperature and decreased layer thickness facilitated the formation of high aspect ratio in‐plane crystals in both PVDF based polymers. On the other side of the spectrum, thicker layers and lower recrystallization temperatures produced on‐edge PVDF crystals and isotropic PVDF‐TFE crystals. The morphology was correlated with oxygen permeability, which decreased by almost two orders of magnitude compared with the bulk. A variety of crystal structures were obtained and explained with nucleation and diffusion theory. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
5.
The oxygen‐barrier properties of amorphous polyethylene terephthalate‐based copolymers with various acid comonomers were examined. The incorporation of increasing amounts of isophthalate, phthalate, or naphthalate gradually reduced the permeability P toward the low values obtained for the corresponding homopolymers. The permeability of poly(ethylene 3,4′‐bibenzoate) homopolymer was only slightly lower than that of polyethylene terephthalate, and the copolymers correspondingly exhibited a very gradual decrease in P as the amount of 3,4′‐bibenzoate (3,4′BB) increased. In contrast, copolymerization with the linear isomer, 4,4′BB, produced a substantial increase in P. Generally, comonomer affected the solubility S less than the diffusivity D, and therefore changes in P reflected primarily changes in D for the polymers studied. The diffusivity and solubility depended on the copolymer composition in accordance with static and dynamic free‐volume concepts of gas permeability in glassy polymers. The solubility S correlated with the amount of free volume as determined by the glass‐transition temperature. Correlation of the diffusivity D with the magnitude of the subambient γ relaxation identified dynamic free volume with thermally activated conformational changes and segmental motions. Correspondence in the activation energy confirmed the relationship. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1889–1899, 2001  相似文献   
6.
7.
8.
9.
10.
This study examined the oxygen‐transport properties of poly(ethylene terephthalate‐co‐bibenzoate) (PETBB55) crystallized from the melt (melt crystallization) or quenched to glass and subsequently isothermally crystallized by heating above the glass‐transition temperature (cold crystallization). The gauche–trans conformation of the glycol linkage was determined by infrared analysis, and the crystalline morphology was examined by atomic force microscopy. Oxygen solubility decreased linearly with volume fraction crystallinity. For melt‐crystallized PETBB55, extrapolation to zero solubility corresponded to an impermeable crystal with 100% trans glycol conformations, a density of 1.396 g cm?3, and a heat of melting of 83 J g?1. From the melt, PETBB55 crystallized as space‐filling spherulites with loosely organized lamellae and pronounced secondary crystallization. The morphological observations provided a structural model for permeability consisting of impermeable platelets randomly dispersed in a permeable matrix. In contrast, cold‐crystallized PETBB55 retained the granular texture of the quenched polymer despite the high level of crystallinity, as measured by the density and heat of melting. Oxygen solubility decreased linearly with volume fraction crystallinity, but zero solubility corresponded to an impermeable defective crystal with a trans fraction of 0.83 and a density of 1.381 g cm?3. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2489–2503, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号