首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243984篇
  免费   5967篇
  国内免费   3014篇
化学   143455篇
晶体学   3774篇
力学   9395篇
综合类   192篇
数学   25812篇
物理学   70337篇
  2020年   2234篇
  2019年   2273篇
  2018年   2117篇
  2017年   2047篇
  2016年   3935篇
  2015年   3235篇
  2014年   4263篇
  2013年   10675篇
  2012年   8777篇
  2011年   10423篇
  2010年   6789篇
  2009年   6425篇
  2008年   9213篇
  2007年   9034篇
  2006年   8807篇
  2005年   8130篇
  2004年   7203篇
  2003年   6321篇
  2002年   6228篇
  2001年   6684篇
  2000年   5246篇
  1999年   4268篇
  1998年   3391篇
  1997年   3408篇
  1996年   3392篇
  1995年   3033篇
  1994年   2910篇
  1993年   2759篇
  1992年   3214篇
  1991年   3066篇
  1990年   2959篇
  1989年   2930篇
  1988年   2848篇
  1987年   2852篇
  1986年   2623篇
  1985年   3667篇
  1984年   3619篇
  1983年   3006篇
  1982年   3249篇
  1981年   3122篇
  1980年   3030篇
  1979年   3130篇
  1978年   3349篇
  1977年   3153篇
  1976年   3093篇
  1975年   2934篇
  1974年   2854篇
  1973年   2833篇
  1968年   1944篇
  1967年   2138篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid–liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 μl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.  相似文献   
2.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
3.
Yang  T. L.  Kao  C. L.  Kuo  C. E.  Yeh  H. C.  Li  W. J.  Li  H. T.  Chen  C. Y. 《Chemistry of Natural Compounds》2022,58(5):825-827
Chemistry of Natural Compounds - A novel bibenzyl derivative, hydrangchinenin (1), was isolated from the stems of Hydrangea chinensis Maxim. (Hydrangeaceae). Its structure was determined on the...  相似文献   
4.
Mathematical Programming - We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function...  相似文献   
5.
Mechanics of Composite Materials - Carbon fiber (CF)/ polyamide (PA6) composites are one of the most promising thermoplastic materials for automobile applications. However, the interfacial...  相似文献   
6.
A selective, highly sensitive, precise, and novel bioanalytical method has been developed and validated to quantify sinococuline, an active constituent present in the phytopharmaceutical drug product containing Cocculus hirsutus plant extract, in vivo. Chromatographic separation was achieved on a Luna Omega Polar-C18 bonded analytical column maintained at 45°C. The isocratic mobile phase consisted of methanol and ammonium formate buffer (60:40, v/v) at acidic pH with a low flow rate of 0.250 mL/min. Detection was performed on an API 4000 mass spectrometer using electrospray ionization in positive polarity and multiple reaction monitoring mode to achieve a lower limit of quantification of 1.50 ng/mL. Excellent accuracy and precision were obtained after extracting the analyte from plasma samples using a chemical analogue as an internal standard in the absence of an isotope-labeled compound. The extraction efficacy was evidenced from recovery study, and the analyte was found to be stable in plasma. Validation study demonstrated linearity with coefficient of correlation, r ≥ 0.99, and minimal matrix effect. This bioanalytical method was successfully applied to evaluate pharmacokinetic parameters of sinococuline from a phase I clinical trial of an aqueous extract of C. hirsutus in healthy human volunteers.  相似文献   
7.
8.
Aequationes mathematicae - In this paper, we establish a new class of dynamic inequalities of Hardy’s type which generalize and improve some recent results given in the literature. More...  相似文献   
9.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
10.
Let p ∈ [1, ∞), q ∈ [1, ∞), α∈ R, and s be a non-negative integer. Inspired by the space JNp introduced by John and Nirenberg(1961) and the space B introduced by Bourgain et al.(2015), we introduce a special John-Nirenberg-Campanato space JNcon(p,q,s) over Rn or a given cube of R;with finite side length via congruent subcubes, which are of some amalgam features. The limit space of such spaces as p →∞ is just the Campanato space which coincides with the space BMO(the space of functions with bounded mean oscillations)when α = 0. Moreover, a vanishing subspace of this new space is introduced, and its equivalent characterization is established as well, which is a counterpart of the known characterization for the classical space VMO(the space of functions with vanishing mean oscillations) over Rn or a given cube of Rn with finite side length.Furthermore, some VMO-H1-BMO-type results for this new space are also obtained, which are based on the aforementioned vanishing subspaces and the Hardy-type space defined via congruent cubes in this article. The geometrical properties of both the Euclidean space via its dyadic system and congruent cubes play a key role in the proofs of all these results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号