首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   10篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1984年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
A chemically grafted tris(trimethylsiloxy)silyl (tris(TMS)) monolayer on a silicon oxide substrate was used as a template for creating nanoclusters of polymer brushes. Polymer brushes were synthesized by surface-initiated polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and tert-butyl methacrylate (t-BMA) via atom transfer radical polymerization (ATRP) from alpha-bromoester groups tethered to the residual silanol groups on the silicon surface after generating a range of tris(TMS) coverage. CuBr/bpy and CuBr/PMDETA were used as the catalytic system for PMPC and Pt-BMA synthesis, respectively. The percentage of tris(TMS) coverage significantly influenced the thickness and morphology of the polymer brushes. Protrusions representing self-aggregation of PMPC brushes in nanopores as visualized by AFM analysis evidently suggested that PMPC brushes were distributed nanoscopically on the surface. The protrusion size and surface roughness corresponded quite well with the graft density of PMPC brushes. The fact that Pt-BMA brushes grown from nanopores were almost featureless implies that self-aggregation of PMPC brushes is truly a consequence of phase incompatibility between hydrophilic PMPC brushes and hydrophobic tris(TMS). The anti-fouling characteristic of PMPC brushes, inferred from plasma protein adsorption, was subsequently varied by controlling the surface coverage ratio between PMPC brushes and tris(TMS).  相似文献   
2.
Dynamics and mechanism of proton transfer in a protonated hydrogen bond (H-bond) chain were studied, using the CH(3)OH(2)(+)(CH(3)OH)(n) complexes, n = 1-4, as model systems. The present investigations used B3LYP/TZVP calculations and Born-Oppenheimer MD (BOMD) simulations at 350 K to obtain characteristic H-bond structures, energetic and IR spectra of the transferring protons in the gas phase and continuum liquid. The static and dynamic results were compared with the H(3)O(+)(H(2)O)(n) and CH(3)OH(2)(+)(H(2)O)(n) complexes, n = 1-4. It was found that the H-bond chains with n = 1 and 3 represent the most active intermediate states and the CH(3)OH(2)(+)(CH(3)OH)(n) complexes possess the lowest threshold frequency of proton transfer. The IR spectra obtained from BOMD simulations revealed that the thermal energy fluctuation and dynamics help promote proton transfer in the shared-proton structure with n = 3 by lowering the vibrational energy for the interconversion between the oscillatory shuttling and structural diffusion motions, leading to a higher population of the structural diffusion motion than in the shared-proton structure with n = 1. Additional explanation on the previously proposed mechanisms was introduced, with the emphases on the energetic of the transferring proton, the fluctuation of the number of the CH(3)OH molecules in the H-bond chain, and the quasi-dynamic equilibriums between the shared-proton structure (n = 3) and the close-contact structures (n ≥ 4). The latter prohibits proton transfer reaction in the H-bond chain from being concerted, since the rate of the structural diffusion depends upon the lifetime of the shared-proton intermediate state.  相似文献   
3.
3,4-Dihydroisoquinolinium salts can be oxidized to the corresponding isoquinolones by DMSO in conc HCl.  相似文献   
4.
Reference materials play an important role for evaluating the accuracy of analytical results, and are essential parts of good laboratory practice. They represent a key tool for quality control of chemical analyses. In Thailand, the demand of food and environmental reference materials is constantly increasing, and the National Institute of Metrology (NIMT, Thailand) is responding to the urgent needs for affordable materials, which require collaborative efforts at the national level. This paper describes the preparation of a new glutinous rice reference material, along with homogeneity and stability studies and the analytical work carried out for the certification of the contents of inorganic elements. The incurred material was collected from an actual rice paddy field. Material preparation along with homogeneity and stability testing were carried out at the Environmental Research Training Centre (ERTC). The homogeneity study was designed to have three experimental conditions; (A) 10 bottles of candidate materials being analyzed each with 2 replicates, (B) 20 bottles with 2 replicates, (C) 10 bottles with 7 replicates, in order to study the suitable treatments for homogeneity testing in the reference material production. It was shown that a minimum number of 10 bottles with duplicate analyses are enough to demonstrate the homogeneity of candidate reference material. Certification of a candidate reference material in a single laboratory using reference method was confirmed with an interlaboratory comparison participated by a certain number of well recognized testing laboratories in Thailand. Further elaborative results will be discussed.  相似文献   
5.
Centella asiatica has been used as a culinary vegetable or medicinal herb. In this study, the hepatoprotective effect of the standardized extract of C. asiatica (ECa233) in rotenone‐treated rats was examined using a GC–MS‐based metabolomic approach. ECa233 contains >80% triterpenoids with a ratio of madecassoside to asiaticoside of 1.5(±0.5):1. Rats were randomly divided into three groups (with six rats/group): sham negative control, rotenone positive control and the ECa233 test group. Rats in the ECa233 group received 10 mg/kg ECa233 orally for 20 days, followed by 2.5 mg/kg intraperitoneal rotenone injection to induce toxicity before being sacrificed. Metabolomic analysis showed that supplementation of ECa233 protected rat liver against rotenone toxicity. Pipecolinic acid was one of the most important metabolites; its level was decreased in the rotenone group as compared with the control. Supplementation with ECa233 before administration of rotenone raised pipecolinic acid to levels intermediate between controls and rotenone alone. The metabolomics approach also helped discover a possible new genuine epimetabolite in the present work. Antioxidant tests revealed that ECa233 inhibited lipid peroxidation and increased catalase activities in liver tissue.  相似文献   
6.
The dynamics and mechanism of proton exchange in phosphonic acid‐functionalized polymers were studied using poly(vinyl‐phosphonic acid) (PVPA) as a model system along with quantum chemical calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the B3LYP/TZVP level as model calculations. This theoretical study began with searching for the smallest, most active polymer segments and their intermediate conformations which could be involved in the local proton‐exchange process. The B3LYP/TZVP results confirmed that a low local dielectric environment and excess proton conditions are required to generate the intermediate conformations, and the shapes of the potential energy curves of the proton exchange between the two phosphonic acid functional groups are sensitive to the local conformational changes. In contrast, a high local dielectric environment increases the energy barriers, thereby preventing the proton from returning to the original functional group. Based on the static results, a mechanism for the proton exchange between the two functional groups involving fluctuations in the local dielectric environment and a local conformational change was proposed. The BOMD results confirmed the proposed mechanism by showing that the activation energies for the proton exchange in the hydrogen bond between two immobilized phosphonic acid moieties, obtained from the exponential relaxation behaviors of the envelopes of the velocity autocorrelation functions and the 1H Nuclear Magnetic Resonance (NMR) line‐shape analyses, are too low to be the rate‐determining process. Instead, coupled librational motion in the backbone which leads to the interconversion between the two intermediate conformations possesses higher activation energy, and therefore represents one of the most important rate‐determining processes. These findings suggested that the rate of the proton exchange in the model phosphonic acid‐functionalized polymer is determined by the polymer mobility which, in this case, is the large‐amplitude librational motion of the vinyl backbone. © 2015 Wiley Periodicals, Inc.  相似文献   
7.
Moringa oleifera oil with comparable caprylic triglyceride to Lexol® 865 and higher oleic acid was prepared into microemulsions. A system comprising natural and synthetic oils (Omix), surfactant (Tween 80 and Span 80; Smix), and water was microemulsion prepared by a visual grading. Twelve microemulsions with diameter of 83.75–286.76 nm, pH of 6.75–8.23, and viscosity of 280.00–517.20 mPa?s were produced. Their antioxidant were 0.926–2.921 μg Trolox/mg. Microemulsions with Omix:Smix mass ratio of 2:8 and 5:5 that had Omix of 2:1 and 1:1 were stable following a 4 months stability evaluation at 25°C and 45ºC. Microemulsions containing moringa oil produced by a practical low-energy method exhibited good viscosity with an acceptable pH and antioxidant activity were therefore applicable for further applications.  相似文献   
8.
Proton transfer reactions at the sulfonic acid groups in Nafion were theoretically studied, using complexes formed from triflic acid (CF3SO3H), H3O+ and H2O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the test-particle model (T-model), density functional theory (DFT) and ab initio calculations. They were employed as starting configurations in Born-Oppenheimer molecular dynamics (BOMD) simulations at 298 K, from which elementary reactions were analyzed and categorized. For the H3O+-H2O complexes, BOMD simulations suggested that a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and that was considered to be one of the most important elementary reactions in the proton transfer process. The average lifetime of H3O+ obtained from BOMD simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO3H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO3H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO3- and -SO3H2+ transition states.  相似文献   
9.
MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB-RFP). We follow the aggregation and localisation of the fusion protein MreB-RFP in this artificial cell-like environment. The expression of MreB-RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface.  相似文献   
10.
Proton transfer reactions and dynamics of the hydrophilic group (-SO(3)H) in Nafion? were studied at low hydration levels using the complexes formed from CF(3)SO(3)H, H(3)O(+) and nH(2)O, 1 ≤n≤ 3, as model systems. The equilibrium structures obtained from DFT calculations suggested at least two structural diffusion pathways at the -SO(3)H group namely, the "pass-through" and "pass-by" mechanisms. The former involves the protonation and deprotonation at the -SO(3)H group, whereas the latter the proton transfer in the adjacent Zundel complex. Analyses of the asymmetric O-H stretching frequencies (ν(OH)) of the hydrogen bond (H-bond) protons showed the threshold frequencies (ν(OH*)) of proton transfer in the range of 1700 to 2200 cm(-1). Born-Oppenheimer Molecular Dynamics (BOMD) simulations at 350 K anticipated slightly lower threshold frequencies (ν(A)(OH*,MD)), with two characteristic asymmetric O-H stretching frequencies being the spectral signatures of proton transfer in the H-bond complexes. The lower frequency (ν(A)(OH,MD))) is associated with the oscillatory shuttling motion and the higher frequency (ν(B)(OH,MD))) the structural diffusion motion. Comparison of the present results with BOMD simulations on protonated water clusters indicated that the -SO(3)H group facilitates proton transfer by reducing the vibrational energy for the interconversion between the two dynamic states (Δν), resulting in a higher population of the H-bonds with the structural diffusion motion. One could therefore conclude that the -SO(3)H groups in Nafion? act as active binding sites which provide appropriate structural, energetic and dynamic conditions for effective structural diffusion processes in a proton exchange membrane fuel cell (PEMFC). The present results suggested for the first time a possibility to discuss the tendency of proton transfer in H-bond using Δν(BA)(OH,MD)) and provided theoretical bases and guidelines for the investigations of proton transfer reactions in theory and experiment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号