首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
化学   2篇
  2016年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Copper binding motifs with their molecular mechanisms of selective copper(I) recognition are essential molecules for acquiring copper ions, trafficking copper to specific locations and controlling the potentially damaging redox activities of copper in biochemical processes. The redox activity and multiple Cu(I) binding of an analog methanobactin peptide‐2 (amb2) with the sequence acetyl–His1–Cys2–Tyr3–Pro4–His5–Cys6 was investigated using ion mobility–mass spectrometry (IM‐MS) and UV–Vis spectrophotometry analyses. The Cu(II) titration of amb2 showed oxidation of amb2 via the formation of intra‐ and intermolecular Cys–Cys disulfide bridges and the multiple Cu(I) coordination by unoxidized amb2 or the partially oxidized dimer and trimer of amb2. The principal product of these reactions was [amb2 + 3Cu(I)]+ which probably coordinates the three Cu(I) ions via two bridging thiolate groups of Cys2 and Cys6 and the δN6 of the imidazole groups of His6, as determined by geometry optimized structures at the B3LYP/LanL2DZ level of theory. The products observed by IM‐MS showed direct correlation to spectral changes associated with disulfide bond formation in the UV–Vis spectrophotometric study. The results show that IM‐MS analysis is a powerful technique for unambiguously determining the major ion species produced during the redox and metal binding chemistry of oligopeptides. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
Whether traveling wave ion mobility‐mass spectrometry (IM‐MS), B3LYP/LanL2DZ density functional theory, and ion size scaled Lennard‐Jones (LJ) collision cross sections (CCS) from the B3LYP optimized structures could be used to determine the type of Zn(II) coordination by the oligopeptide acetyl‐His1‐Cys2‐Gly3‐Pro4‐Tyr5‐His6‐Cys7 (amb5) was investigated. The IM‐MS analyses of a pH titration of molar equivalents of Zn(II):amb5 showed that both negatively and positively charged complexes formed and coordination of Zn(II) increased as the His and Cys deprotonated near their pKa values. The B3LYP method was used to generate a series of alternative coordination structures to compare with the experimental results. The method predicted that the single negatively charged complex coordinated Zn(II) in a distorted tetrahedral geometry via the 2His‐2Cys substituent groups, whereas, the double negatively charged and positively charged complexes coordinated Zn(II) via His, carbonyl oxygens and the C‐terminus. The CCS of the B3LYP complexes were calculated using the LJ method and compared with those measured by IM‐MS for the various charge state complexes. The LJ method provided CCS that agreed with five of the alternative distorted tetrahedral and trigonal bipyramidal coordinations for the doubly charged complexes, but provided CCS that were 15 to 31 Å2 larger than those measured by IM‐MS for the singly charged complexes. Collision‐induced dissociation of the Zn(II) complexes and a further pH titration study of amb5B, which included amidation of the C‐terminus, suggested that the 2His‐2Cys coordination was more significant than coordinations that included the C‐terminus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号