首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   10篇
  国内免费   6篇
化学   81篇
晶体学   1篇
力学   3篇
数学   8篇
物理学   17篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   10篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   10篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1948年   3篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
1.
2.
3-(4-Phenyl) benzoyl propionic acid was used as the starting material for the synthesisof furanones (2), pyrrolinones (5), pyridazinones (7), benzoxazinones (8) and quinazolinones (9-11). The behaviour of the derivatives of furanones and benzoxazinones toward different nucleophiles is reported.  相似文献   
3.
The reduction of [WCl4(PMe3)3] with dispersed sodium, under dinitrogen, gives cis-[W(N2)2(PMe3)4], while under ethylene trans-[W(C2H4)2(PMe3)4] is obtained. The ethylene complex can also be prepared by displacement of the dinitrogen molecules in cis-[W(N2)2(PMe3)4] by ethylene at room temperature and pressure. Interaction of cis-[M(N2)2(PMe3)4] complexes (M = Mo, W), with PMe3, under helium or argon, yields [M(N2)(PMe3)5]. The molybdenum complex crystallizes in the orthorhombic space group Pnma, with a 22.063(6), b 12.106(4), c 9.745(4) Å. The Mo—P distance trans to the dinitrogen ligand (2.483(7) Å) is slightly longer than the average of the other four Mo—P bonds (2.460(5) Å).  相似文献   
4.
YBa2Cu3-xVxO7-y(x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) superconductors have been prepared. X-ray diffraction shows that the system remains orthorhombic for all compositions studied, but for x > 0.4 V2O5 was detected as an impurity phase. Substitution of V5+ for Cu2+ occurs in the Cu(2) sites on the Cu(2)-O planes. The introduction of the high valence element, vanadium, produces the extra free-electrons. These electrons recombine with the positive carrier of the system. It makes depression of the mobility and the Hall number of YBa2Cu3-xVxO7-v and also results in a depression of TC.  相似文献   
5.
Abstract— Chemiluminescence of the Eu(II)/Eu(III)-adenine nucleotide-H2O2 system and fluorescence of the Eu(III)-adenosine triphosphate system have been investigated. The spectral distribution of the chemiluminescence emission has shown an occurrence of three main bands (Λ=470–480,590–620 and ca. 700 nm). The energy transfer process from the adenosine triphosphate molecules to the Eu(III) ions has been observed in the fluorescence spectrum. The examined chemiluminescence and fluorescence spectra show that these both kinds of emission originate from the 5 D ***τ7F*** ( n =1–4) transitions in the Eu(III) ions.  相似文献   
6.
A single-sheeted double many-body expansion (DMBE) potential energy surface is reported for the 1 2 A′′ state of NH2. To approximate its true multi-sheeted nature, a novel switching function that imposes the correct behavior at the H2(X 1Σ g +)+ N(2 D) and NH(X 3Σ-) + H(2 S) dissociation limits has been suggested. The new DMBE form is shown to fit with high accuracy an extensive set of new ab initio points (calculated at the multi-reference configuration interaction level using the full valence complete active space as reference and aug-cc-pVQZ and aug-cc-pV5Z basis sets) that have been semiempirically corrected at the valence regions by scaling the n-body dynamical correlation terms such as to account for the finite basis set size and truncated configuration interaction expansion. A detailed study of the N(2 D) ... H2(X 1Σ g +) van der Waals region has also been carried out. These calculations predict a nearly free rigid-rotor with two shallow van der Waals wells of C 2v and C v symmetries. Such a result contrasts with previous cc-pVTZ calculations which predict a single T-shaped van der Waals structure. Except in the vicinity of the crossing seam, which is replaced by an avoided intersection, the fit shows the correct physical behavior over the entire configurational space. The topographical features of the new DMBE potential energy surface are examined in detail and compared with those of other potential functions available in the literature. Amongst such features, we highlight the barrier for linearization (11,802 cm-1) which is found to overestimate the most recent empirical spectroscopic estimate by only 28 cm-1. Additionally, the T-shaped N(2 D) ... H2 van der Waals minimum is predicted to have a well depth of 90 cm-1, being 11 cm-1 deeper than the C v minimum. The title DMBE form is therefore recommendable for dynamics studies of both non-reactive and reactive N(2 D)+H2 collisions.  相似文献   
7.
Nanoparticulate TiO2/Rh3+ sols have been synthesized by the colloidal sol?Cgel route. The combination of the data measured with optical techniques such as laser diffraction, dynamic light scattering and multiple light scattering with a near-infrared light allows us to follow up the evolution of the peptization process and to establish the effect of the presence of Rh3+ on it. It is observed that the presence of rhodium ions retards the peptization step (t2) and decreases both the average particle size of the nanoparticles and the viscosity of the nanoparticulate sols. In addition, when Rh3+ is present the isoelectric point shifts up to higher pH, which suggests that chemical adsorption of the rhodium (III) cations onto the surface of the TiO2 nanoparticles is produced. The xerogels and cryogels obtained from the sols are constituted by anatase as major phase and traces of brookite. The phase transition is observed at lower temperatures for the xerogels containing rhodium (III) and at higher temperatures in the case of the cryogels. Finally, photocatalytic activity is higher in the case of the TiO2/Rh3+ sols due to the rhodium (III) effect on the electronic transitions from the valence band to the conduction band.  相似文献   
8.
Hybrid organic–inorganic solids represent an important class of engineering materials, usually prepared by sol–gel processes by cross‐reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3‐Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid‐material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 2–11) was deeply investigated for the first time by solution‐state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy‐ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of sol–gel hybrid biomaterials with tuneable properties.  相似文献   
9.
The reactivity of a series of iridium? pyridylidene complexes with the formula [TpMe2Ir(C6H5)2(C(CH)3C(R)N H] ( 1 a – 1 c ) towards a variety of substrates, from small molecules, such as H2, O2, carbon oxides, and formaldehyde, to alkenes and alkynes, is described. Most of the observed reactivity is best explained by invoking 16 e? unsaturated [TpMe2Ir(phenyl)(pyridyl)] intermediates, which behave as internal frustrated Lewis pairs (FLPs). H2 is heterolytically split to give hydride? pyridylidene complexes, whilst CO, CO2, and H2C?O provide carbonyl, carbonate, and alkoxide species, respectively. Ethylene and propene form five‐membered metallacycles with an IrCH2CH(R)N (R=H, Me) motif, whereas, in contrast, acetylene affords four‐membered iridacycles with the IrC(?CH2)N moiety. C6H5(C?O)H and C6H5C?CH react with formation of Ir? C6H5 and Ir? C?CPh bonds and the concomitant elimination of a molecule of pyridine and benzene, respectively. Finally the reactivity of compounds 1 a – 1 c against O2 is described. Density functional theory calculations that provide theoretical support for these experimental observations are also reported.  相似文献   
10.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号