首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   12篇
数学   1篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
A novel macroporous silica-based chelating polymeric composite, DtDo/SiO2-P, was synthesized by molecular modification of 4,4′,(5′)-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) with a long carbon chain organic compound 1-dodecanol. It was performed through impregnation and immobilization of DtBuCH18C6 and 1-dodecanol molecules into the pores of the SiO2-P particles. The adsorption of a few fission and non-fission product elements Sr(II), Ba(II), Cs(I), Ru(III), Mo(VI), Na(I), K(I), Pd(II), La(III), and Y(III) onto DtDo/SiO2-P was investigated at 323 K. The effects of contact time and the HNO3 concentration in a range of 0.1-4.0 M were investigated. It was found that at the optimum concentration of 2.0 M HNO3, DtDo/SiO2-P exhibited strong adsorption ability and excellent selectivity for Sr(II) over all of the tested elements, which showed very weak or almost no adsorption except Ba(II). The bleeding of total organic carbon (TOC) from DtDo/SiO2-P was evaluated. The quantity of TOC in aqueous phase increased with an increase in HNO3 concentration in terms of a linear equation [TOC] = 35.82[HNO3] + 115.5 with a correlation coefficient of 0.9751. The TOC content leaked from DtDo/SiO2-P modified by 1-dodecanol, 119.0-269.3 ppm, in the range of 1.0-4.0 M HNO3 was significantly lower than that of 424.8-634.6 ppm in the case without modification. It resulted from the intermolecular interaction force of DtBuCH18C6 and 1-dodecanol through hydrogen bonding. The reduction of DtBuCH18C6 leakage by molecular modification was achieved. It is of great benefit to application of DtDo/SiO2-P in partitioning of Sr(II), one of the main heat generators, from high level liquid waste (HLLW) in reprocessing process of nuclear spent fuel in MAREC (Minor Actinides Recovery from HLLW by Extraction Chromatography) process developed.  相似文献   
2.
To partition effectively Cs(I) and Sr(II), two harmful heat emitting nuclides, from a highly active liquid waste by extraction chromatography, two kinds of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO(2)-P and TODGA/SiO(2)-P, were synthesized. Two chelating agents, 1,3-[(2,4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14), an excellent supramolecular compound having molecular recognition ability for Cs(I), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) were impregnated and immobilized into the pores of SiO(2)-P particles support by a vacuum sucking technique. The loading and elution of 11 typical simulated fission and non-fission products from 4.0M or 2.0M HNO(3) were performed at 298K. It was found that in the first column packed with the Calix[4]arene-R14/SiO(2)-P, all of the simulated elements were separated effectively into two groups: (1) Na(I), K(I), Sr(II), Fe(III), Ba(II), Ru(III), Pd(II), Zr(IV), and Mo(VI) (noted as Sr-group); (2) Cs(I)-Rb(I) (Cs-group) by eluting with 4.0M HNO(3) and distilled water, respectively. The harmful element Cs(I) flowed into the second group along with Rb(I) because of their close sorption and elution properties towards Calix[4]arene-R14/SiO(2)-P, while Sr(II) showed no sorption and flowed into Sr-containing group. In the second column packed with TODGA/SiO(2)-P, the Sr-group was separated into (1) Ba(II), Ru(III), Na(I), K(I), Fe(III), and Mo(VI) (non-sorption group); (2) Sr(II); (3) Pd(II); and (4) Zr(IV) by eluting with 2.0M HNO(3), 0.01M HNO(3), 0.05M DTPA-pH 2.5, and 0.5M H(2)C(2)O(4), respectively. Sr(II) adsorbed towards TODGA/SiO(2)-P flowed into the second group and showed the excellent separation efficiency from others. Based on the elution behavior of the tested elements, an advanced PREC (Partitioning and Recovery of two heat generators from an acidic HLW (high activity liquid waste) by Extraction Chromatography) process was proposed.  相似文献   
3.
Two kinds of novel macroporous silica-based chelating polymeric adsorption materials, TODGA/SiO2-P and CMPO/SiO2-P, were synthesized by impregnating and immobilizing two chelating agents, N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide (CMPO), into the pores of SiO2-P particles. To separate minor actinides (MA(III)) such as Am(III) and Cm(III), the adsorption and elution of 13 typically simulated fission products from a 3 M HNO3 were performed. It was found that in the first column packed with TODGA/SiO2-P, all of the simulated elements were separated effectively into four groups: (1) Cs(I), Mo(VI), and the most portion of Ru(III) (non-adsorption group), (2) Sr(II), small portion of Gd(III) and all of light REs(III) (MA-lRE-Sr group), (3) most of Gd(III) and all heavy RE(III) (hRE group), and (4) Zr(IV), Pd(II), and a little of Ru(III) (Zr-Pd group) by eluting with 3.0 M HNO3, 1.0M HNO3, distilled water, and 0.5 M H2C2O4, respectively, at 298 K. MA(III) was predicted to flow into the second group along with Nd(III) because of their close adsorption-elution onto TODGA/SiO2-P. In the second column packed with CMPO/SiO2-P, MA-lRE-Sr group was separated into (1) Sr(II), (2) middle RE(III) such as Gd(III), Eu(III), Sm(III), and quite small portion of Nd(III) (MA-mRE), and (3) light RE(III) such as La(III), Ce(III), and most of Nd(III) by eluting with 3.0 M HNO3 and 0.05 M DTPA-pH 2.0, respectively, at 323 K. MA(III) was believed to flow into MA-mRE group along with Gd(III) due to their similar adsorption properties towards CMPO/SiO2-P. Based on positions of MA(III) appeared in light and heavy RE(III), an improved MAREC process for MA(III) partitioning from HLW was proposed.  相似文献   
4.
Inorganic-organic hybrid membranes containing silica as the structure matrix, poly(N-vinylpyrrolidone) (PVP) as the organic mediating agent and silver ions as olefinic carriers were prepared using sol–gel method and dip-coating process. The structure and permeances of the membranes for N2, He, C2H4, C2H6 at different temperatures indicated that defect-free membranes were obtained and the transportation of the C2H4 through the membranes followed the dissolution and diffusion mechanism. Ideal separation factors of C2H4/C2H6 through the membranes were evaluated at the temperature of 298, 373 and 423 K respectively using mixture gas of 50% C2H4-50% C2H6. The results showed that the ideal separation factors of C2H4/C2H6 through the membranes were obviously greater than the ratio of PC2H4/PC2H6 obtained from the single gas measurement due to the hindering effect by the adsorbed C2H4. The ideal separation factors of C2H4/C2H6 increased with temperature and reached 10 at 423 K, which suggested that C2H4 and C2H6 could be separated at lower humidity compared to the reported organic polymer/silver salt membranes in which humidified gases and higher silver loading were usually used. The transport of C2H4 in the inorganic-organic hybrid membrane was proposed to follow the hopping mechanism, that is, olefins moved across the fixed silver sites.  相似文献   
5.
A macroporous silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric composite (TODGA/SiO2-P) was synthesized. It was done through impregnation and immobilization of TODGA molecule into the pores of the SiO2-P particles utilizing a vacuum sucking technique. The macroporous SiO2-P particles were the silica-based organic/inorganic composite synthesized by immobilizing styrene-divinylbenzene copolymer inside SiO2 through the complicated polymerization reaction. The adsorption of rare earth (RE(III)) elements onto TODGA/SiO2-P was investigated in HNO3 solution containing diethylenetriaminepentaacetic acid (DTPA), an acidic multi-dentate chelating agent. It was found that in the presence of 0.05 M DTPA, and H+ had significant effect on the TODGA/SiO2-P adsorption due to the competition reactions of RE(III) with different species, H4DTPA and H2DTPA3−. With an increase in the concentration of from 0.115 M to 3.015 M, the adsorption of RE(III) onto TODGA/SiO2-P increased noticeably. On the other hand, RE(III) showed strong adsorption at 0.1 M H+, weak adsorption at around pH 2, and no adsorption in excess of pH 2.3. In a 0.1 M H+-0.115 M -0.05 M DTPA solution, a change of the distribution coefficient of RE(III) onto TODGA/SiO2-P with an increase in atomic number of RE(III) from La(III) to Lu(III) was investigated. The silica-based TODGA/SiO2-P polymeric composite showed strong adsorption for heavy RE(III) over the light one. In a 0.01 M H+-1.0 M -0.05 M DTPA solution, the effect of the ratio of solid phase to liquid one on the relationship of the distribution coefficient of RE(III) with the change in atomic number of RE(III) was also studied. Based on the complicated disassociation equilibrium of DTPA, the influence of the concentrations of and H+ on the adsorption of TODGA/SiO2-P for RE(III) was demonstrated. This makes the partitioning of RE(III) and MA(III) together from high level liquid waste (HLLW) by the polymeric composite TODGA/SiO2-P promising.  相似文献   
6.
A novel macroporous silica-based 2,6-bis(5,6-diisobutyl-1,2,4-triazine-3-yl)pyridine (iso-Bu-BTP), a neutral chelating agent having several softatom nitrogen, polymeric composite (iso-Bu-BTP/SiO2-P) was synthesized. It was done through impregnation and immobilization of iso-Bu-BTP molecule into the pores of SiO2-P particles with 40–60 μm of bead diameter and 0.6 μm of mean pore size. The effective impregnation resulted from the intermolecular interaction of iso-Bu-BTP and co-polymer inside the SiO2-P particles by a vacuum sucking technique. To understand the possibility of applying iso-Bu-BTP in the MAREC process developed, the adsorption behavior of a few representative rare earths (REs) such as Ce(III), Nd(III), Gd(III), Dy(III), Er(III), Yb(III), and Y(III) towards iso-Bu-BTP/SiO2-P was investigated at 298 K. The influence of the HNO3 concentration in a wide range of pH 5.52–3.0M and a few chelating agents such as formic acid, citric acid, and diethylenetriaminepentaacetic acid (DTPA) on the adsorption of RE(III) was examined. It was found that in the presence of chelating agent, the adsorption ability of the tested RE(III) towards iso-Bu-BTP/SiO2-P decreased due to two competition reactions of RE(III) with iso-Bu-BTP/SiO2-P and chelating agents. In a 0.01M HNO3 solution containing 1M formic acid or 1M citric acid, light RE(III) showed lower adsorption towards iso-Bu-BTP/SiO2-P than that of the heavy one. This makes the separation of light RE(III) from the heavy one possible. Based on the similarity of minor actinides and heavy RE(III) in chemical properties and the results of column separation experiments, chromatographic partitioning of light RE(III) from a simulated high level liquid waste solution composed of the heavy RE(III) and minor actinides in MAREC process is promising.  相似文献   
7.
To separate the long-life and significant fission product elements from high level liquid waste (HLLW), a novel partitioning process for the treatment of HLLW has been studied experimentally based on column separation technique using macroporous silica-based adsorbents. This process consists of (1) Cs and Rb are removed by the first separation column packed with (calix[4] + dodecanol)/SiO2–P adsorbent; (2) Sr and Ba are eluted out by the second separation column packed with (DtBuCH18C6 + dodecanol)/SiO2–P adsorbent; (3) Pd is partitioned by the third separation column packed with MOTDGA–TOA/SiO2–P adsorbent; (4) Ru, Rh and Mo can be separated by the fourth separation column packed with TODGA/SiO2–P adsorbent; (5) Am is separated from RE by the fifth column is packed with isobutyl-BTP/SiO2–P adsorbent. The experimental results indicated that this partitioning process is essentially feasible.  相似文献   
8.
To separate minor actinides from high level liquid waste (HLLW) of PUREX reprocessing, a silica-based macroporous isobutyl-BTP/SiO2-P adsorbent was synthesized by impregnating isobutyl-BTP (2,6-di(5,6-diisobutyl-1,2,4-triazin-3-yl)pyridine) extractant into the macroporous SiO2-P support with a mean diameter of 60 μm. A partitioning process using extraction chromatography for the treatment of HLLW was designed consisting five separation columns. As a partly work focused on isobutyl-BTP/SiO2-P separation column, adsorption behavior of 241Am and trivalent rare earth (RE) from simulated HLLW onto silica-based isobutyl-BTP/SiO2-P adsorbent was investigated by batch method. Meanwhile, the chemical and radiolytic stabilities of isobutyl-BTP/SiO2-P adsorbent against 0.01 M HNO3 solution and γ-ray irradiation were studied. It was found that isobutyl-BTP/SiO2-P adsorbent exhibited good adsorption selectivity for 241Am over RE(III) in 0.01 M HNO3 solution and showed weak or no adsorption affinity to light and middle RE(III) groups. In addition, in stability experiments, isobutyl-BTP adsorbent showed excellent stability against 0.01 M HNO3 solution and γ-ray irradiation over 4 months contact time.  相似文献   
9.
10.
A macroporous silica-based supramolecular recognition absorbent (Calix[4]?+?Dodecanol)/SiO2?CP, was prepared by successive impregnation and fixing the 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-Calix[4]arene (Calix[4]arene-R14) and its molecule modifier 1-Dodecanol onto SiO2 silica-based polymer support. The characterization of (Calix[4]?+?Dodecanol)/SiO2?CP was examined by thermal gravimetry and differential thermal analysis and electron probe microanalysis. Relatively large separation factors of Cs and other metal ions (?? Cs/M n+ ) above 60 were obtained in the presence of 3?M HNO3. The adsorption data of Cs(I) fitted well with Langmuir isotherm and the maximum adsorption capacity was estimated to be 0.19?mmol?g?1. The Cs(I) in 3?M HNO3 were also effectively adsorption on (Calix[4]?+?Dodecanol)/SiO2?CP in the column operation, and the loaded Cs(I) was successfully eluted with an eluent of H2O. The column packed with (Calix[4]?+?Dodecanol)/SiO2?CP had excellent reusability after three cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号