首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Ambient temperature ruthenium‐catalyzed C?H arylations were accomplished by visible light without additional photocatalysts. The robustness of the ruthenium‐catalyzed C?H functionalization protocol was reflected by a broad range of sensitive functional groups and synthetically useful pyrazoles, triazoles and sensitive nucleosides and nucleotides, as well as multifold C?H functionalizations. Biscyclometalated ruthenium complexes were identified as the key intermediates in the photoredox ruthenium catalysis by detailed computational and experimental mechanistic analysis. Calculations suggested that the in situ formed photoactive ruthenium species preferably underwent an inner‐sphere electron transfer.  相似文献   
3.
4.
Visible‐light‐induced ruthenium catalysis has enabled remote C?H alkylations with excellent levels of position control under exceedingly mild conditions at room temperature. The metallaphotocatalysis occurred under exogenous‐photosensitizer‐free conditions and features an ample substrate scope. The robust nature of the photo‐induced mild meta‐C?H functionalization is reflected by the broad functional group tolerance, and the reaction can be carried out in an operationally simple manner, setting the stage for challenging secondary and tertiary meta‐C?H alkylations by ruthenaphotoredox catalysis.  相似文献   
5.
The ruthenium-catalyzed synthesis of diarylmethane compounds was realized under exceedingly mild photoredox conditions without the use of exogenous photocatalysts. The versatility and robustness of the ruthenium-catalyzed C−H benzylation was reflected by an ample scope, including multifold C−H functionalizations, as well as transformable pyrazoles, imidates and sensitive nucleosides. Mechanistic studies were indicative of a photoactive cyclometalated ruthenium complex, which also enabled versatile C−H allylations.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号