首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   12篇
物理学   8篇
  2016年   1篇
  2011年   2篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1983年   1篇
  1981年   1篇
  1966年   1篇
  1939年   1篇
  1938年   1篇
  1937年   1篇
  1936年   1篇
  1935年   1篇
排序方式: 共有20条查询结果,搜索用时 8 毫秒
1.
The distribution and exchange dynamics of phenol molecules in colloidal dispersions of submicron hollow polymeric capsules is investigated by pulsed field gradient NMR (PFG-NMR). The capsules are prepared by layer-by-layer assembly of polyelectrolyte multilayers on silica particles, followed by dissolution of the silica core. In capsule dispersion, (1)H PFG echo decays of phenol are single exponentials, implying fast exchange of phenol between a free site and a capsule-bound site. However, apparent diffusion coefficients extracted from the echo decays depend on the diffusion time, which is typically not the case for the fast exchange limit. We attribute this to a particular regime, where apparent diffusion coefficients are observed, which arise from the signal of free phenol only but are influenced by exchange with molecules bound to the capsule, which exhibit a very fast spin relaxation. Indeed, relaxation rates of phenol are strongly enhanced in the presence of capsules, indicating binding to the capsule wall rather than encapsulation in the interior. We present a quantitative analysis in terms of a combined diffusion-relaxation model, where exchange times can be determined from diffusion and spin relaxation experiments even in this particular regime, where the bound site acts as a relaxation sink. The result of the analysis yields exchange times between free phenol and phenol bound to the capsule wall, which are on the order of 30 ms and thus slower than the diffusion controlled limit. From bound and free fractions an adsorption isotherm of phenol to the capsule wall is extracted. The binding mechanism and the exchange mechanism are discussed. The introduction of the global analysis of diffusion as well as relaxation echo decays presented here is of large relevance for adsorption dynamics in colloidal systems or other systems, where the standard diffusion echo decay analysis is complicated by rapidly relaxing boundary conditions.  相似文献   
2.
This paper presents a study of the permeation of poly(ethylene oxide) (PEO) chains through the nanoporous wall of hollow polymeric capsules prepared by self-assembly of polyelectrolytes. We employ the method of pulsed field gradient (PFG) NMR diffusion to distinguish chains in different sites, i.e., in the capsule interior and free chains in the dispersion, by their respective diffusion coefficient. From a variation of the observation time, the time scale of the molecular exchange between both sites and thus the permeation rate constant is extracted from a two-site exchange model. Permeation rate constants show two different regimes with a different dependence on chain length. This suggests a transition between two different mechanisms of permeation as the molecular weight is increased. In either regime, the permeation time can be described by a scaling law tau approximately N (b) , with b = (4)/ 3 for short chains and b = (1)/ 3 for long chains. We discuss these exponents, which clearly differ from the theoretical predictions for chain translocation.  相似文献   
3.
4.
Exact (Born-Oppenheimer) 3-D numerical solutions of the time-dependent Schr?dinger equation are obtained for the one electron linear H+-H2+ atom-molecule system at large internuclear distance R in interaction with two-cycles intense (I>10(14) W cm(-2)) 800 nm laser pulses. High-order harmonic generation (HHG) spectra are obtained with an energy cutoff larger than the atomic maximum of I(p)+3U(p), where I(p) is the ionization potential and U(p) is the ponderomotive energy. At large R, this extended cutoff is shown to be related to the nature of electron transfer, whose direction is shown to depend critically on the carrier-envelope phase (CEP) of the ultrashort pulse. Constructive and destructive interferences in the HHG spectrum resulting from coherent superpositions of electronic states in the H+-H2+ system are interpreted in terms of multiple electron trajectories extracted from a time profile analysis.  相似文献   
5.
Oxidations of glycolaldehyde (GA) to glyoxal by osmium(VIII), iridium(IV) and platinum(IV) have been investigated in aqueous solution, and the orders with respect to each [reactant] determined. The reaction involving iridium(IV) takes place through intermediate formation of free radicals in a MeCO2Na-MeCO2H buffer medium, whereas a one-step two-electron transfer process occurs in the oxidations by OsVIII and PtIV in an alkaline medium. Mechanisms consistent with the experimental findings are proposed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
6.
We study enhanced ionization (EI) in asymmetric molecules by solving the 3D time-dependent Schr?dinger equation for HeH2+ driven by a few-cycle laser pulse linearly polarized along the molecular axis. We find that EI is much stronger when the laser's carrier-envelope phase is such that the electric field at the peak of the pulse is antiparallel to the permanent dipole of the molecule (PDM). This phase dependence is explained by studying the molecule in the presence of a static electric field. When this field is antiparallel to the PDM, the energy of the dressed ground state moves up (with increasing internuclear distance R) to cross with excited states, leading to a stronger ionization via intermediate state resonances and via tunneling. We predict analytically the laser and molecular parameters at which these crossings are expected to occur in any asymmetric molecule.  相似文献   
7.
We predict photoelectron angular distributions for double ionization of Li- by both weak and intense ultrashort, linearly polarized laser pulses by direct numerical integration of the three-dimensional, time-dependent Schr?dinger equation. Li- is treated as a two-active electron system. Near threshold, for low intensity we recover general features of angular distributions for one-photon double ionization. For the intense field (multiphoton) case, the photoelectron angular distribution changes significantly, particularly in directions parallel and perpendicular to the laser polarization axis.  相似文献   
8.
9.
The purpose of this research work was to develop and evaluate a chronotherapeutic based colon-targeted drug delivery system of theophylline (THEO) exploiting pH-enzyme sensitive property for the prevention of episodic attack of asthma in early morning. Guar gum microspheres of theophylline were prepared by emulsification technique. Coating of microspheres was performed using solvent evaporation method with pH sensitive Eudragit(?) polymers. The particle size and surface morphology, entrapment efficiency and degree of swelling of microspheres were examined. The in vitro drug release studies were performed in pH progression medium and also in the presence of 2% rat caecal content. Theophylline was efficiently microencapsulated in guar gum microspheres at different polymer concentrations (1-4%). Fourier transform infrared (FT-IR)-spectroscopy confirmed the intermolecular interactions between guar gum and glutaraldehyde. Coating of guar gum microspheres by Eudragit led to decelerate the in vitro drug release of THEO. Moreover in vitro drug release studies also performed with 2% rat caecal content showed marked increment in drug release. The controlled release of THEO after a lag time was achieved with developed formulation for chronotherapeutic delivery. The pH dependent solubility behavior of Eudragit and gelling properties of guar gum are found to be responsible for delaying the release.  相似文献   
10.
We study systematically the entanglement of a two-qubit Heisenberg XY model in thermal equilibrium in the presence of an external arbitrarily-directed static magnetic field, thereby generalizing our prior work [G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)]. We show that a magnetic field having a component in the xy-plane containing the spin-spin interaction components produces different entanglement for ferromagnetic (FM) and antiferromagnetic (AFM) couplings. In particular, quantum phase transitions induced by the magnetic field-driven level crossings always occur for the AFM-coupled qubits, but only occur in FM-coupled qubits when the coupling is of Ising type or when the magnetic field has a component perpendicular to the xy-plane. When the magnetic field has a component in the xy-plane, the cut-off temperature above which the entanglement of both the FM- and AFM-coupled qubits vanishes can always be controlled using the magnetic field for any value of the XY coupling anisotropy parameter. Thus, by adjusting the magnetic field, an entangled state of two spins can be produced at any finite temperature. Finally, we find that a higher level of entanglement is achieved when the in-plane component of the magnetic field is parallel to the direction in which the XY exchange coupling is smaller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号