首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  国内免费   1篇
化学   43篇
晶体学   1篇
数学   4篇
物理学   7篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
A series of ammonium monosubstituted H-phosphonate salts were synthesized by combining H-phosphonate diesters with amines in the absence of solvent at 80 °C. Variation of the ester substituent and amine produced a range of ionic liquids with low melting points. The products and by-products were analyzed by spectroscopic and spectrometric techniques in order to get a better mechanistic picture of the dealkylation and formal dearylation observed. For dialkyl H-phosphonate diesters, (RO)2P(O)H (R=alkyl), the reaction proceeds via direct dealkylation with the reactivity increasing in the order R=iPr<Et<Me corresponding to DFT calculated activation enthalpies of 22.6, 20.8, and 17.9 kcal mol−1. For the diphenyl H-phosphonate diesters, (PhO)2P(O)H, the dearylation was found to proceed via phenol-assisted formation of a 5-coordinate intermediate, (PhO)3PH(OH), from which P(OPh)3 and water were eliminated. The presence of an equivalent of water then facilitated the formation of P(OH)2OPh and the amine, R'NH2, subsequently abstracted a proton from it to yield [(PhO)PH(O)O]-[R'NH3]+.  相似文献   
2.
Biodegradable primary batteries, also known as transient batteries, are essential to realize autonomous biodegradable electronic devices with high performance and advanced functionality. In this work, magnesium, copper, iron, and zinc – metals that exist as trace elements in the human body – were tested as materials for biomedical transient electronic devices. Different full cell combinations of Mg and X (where X = Cu, Fe, and Zn and the anodized form of the metals) with phosphate buffered saline (PBS) as electrolyte were studied. To form the cathodes, metal foils were anodized galvanostatically at a current density of 2.0 mA cm−2 for 30 mins. Electrochemical measurements were then conducted for each electrode combination to evaluate full cell battery performance. Results showed that the Mg−Cuanodized chemistry has the highest power density at 0.99 mW/cm2. Nominal operating voltages of 1.26 V for the first 0.50 h and 0.63 V for the next 3.7 h were observed for Mg−Cuanodized which was discharged at a current density of 0.70 mA cm−2. Among the materials tested, Mg−Cuanodized exhibited the best discharge performance with an average specific capacity of 2.94 mAh cm−2, which is comparable to previous reports on transient batteries.  相似文献   
3.
A reductive rearrangement of aminocyclopropanes is described for the synthesis of cis- or trans-fused bicyclic 1,2-diaminocyclobutanes. Ionization of a cyclic aminal using BF3·OEt2 induces rearrangement to a cyclobutyl iminium ion, which is subsequently reduced by Et3SiH. Substitution with allyltrimethylsilane allows carbon incorporation, giving a quaternary center. Silyloxy-substituted cyclopropanes rearrange rapidly to cyclobutanones which react with NaBH4 to provide 1,2-aminohydroxycyclobutanes. These aminals were generated by the reduction of a Boc-imide with DIBAL-H or LiBH4.  相似文献   
4.
In this paper we consider the use of extended formulations in LP-based algorithms for mixed integer conic quadratic programming (MICQP). Extended formulations have been used by Vielma et al. (INFORMS J Comput 20: 438–450, 2008) and Hijazi et al. (Comput Optim Appl 52: 537–558, 2012) to construct algorithms for MICQP that can provide a significant computational advantage. The first approach is based on an extended or lifted polyhedral relaxation of the Lorentz cone by Ben-Tal and Nemirovski (Math Oper Res 26(2): 193–205 2001) that is extremely economical, but whose approximation quality cannot be iteratively improved. The second is based on a lifted polyhedral relaxation of the euclidean ball that can be constructed using techniques introduced by Tawarmalani and Sahinidis (Math Programm 103(2): 225–249, 2005). This relaxation is less economical, but its approximation quality can be iteratively improved. Unfortunately, while the approach of Vielma, Ahmed and Nemhauser is applicable for general MICQP problems, the approach of Hijazi, Bonami and Ouorou can only be used for MICQP problems with convex quadratic constraints. In this paper we show how a homogenization procedure can be combined with the technique by Tawarmalani and Sahinidis to adapt the extended formulation used by Hijazi, Bonami and Ouorou to a class of conic mixed integer programming problems that include general MICQP problems. We then compare the effectiveness of this new extended formulation against traditional and extended formulation-based algorithms for MICQP. We find that this new formulation can be used to improve various LP-based algorithms. In particular, the formulation provides an easy-to-implement procedure that, in our benchmarks, significantly improved the performance of commercial MICQP solvers.  相似文献   
5.
The spinodal phase decomposition of an immiscible binary polymer blend system is investigated with numerical models in two-dimensional and three-dimensional (3D). The effect of the elastic energy is included. The mechanism of the evolution of the phase separation is studied and the characteristic length R(t) is shown to be proportional to t(13). In the case when the phase separation is directed by a heterogeneously functionalized substrate, the increase in the characteristic length is divided into two stages by a critical time. The R(t) approximately t(13) diagram can be fitted with a straight line in both the first and second stages. The slope of the fitting line significantly decreases after the critical time. The compatibility of the resulting pattern to the substrate pattern is also measured by a factor C(S). It is observed that there is also a critical time in the evolution of the compatibility for the cases with and without elastic energy. The critical time of C(S) is identical with the respective critical time of R(t). The lateral and vertical composition profiles functionalized substrate is observed with the 3D model. The difference mechanism of the cases with and without elastic energy is discussed.  相似文献   
6.
Methods for the quantification of statistically valid measures of the uncertainties associated with X‐ray absorption fine structure (XAFS) data obtained from dilute solutions using fluorescence measurements are developed. Experimental data obtained from 10 mM solutions of the organometallic compound ferrocene, Fe(C5H5)2, are analysed within this framework and, following correction for various electronic and geometrical factors, give robust estimates of the standard errors of the individual measurements. The reliability of the refinement statistics of standard current XAFS structure approaches that do not include propagation of experimental uncertainties to assess subtle structural distortions is assessed in terms of refinements obtained for the staggered and eclipsed conformations of the C5H5 rings of ferrocene. Standard approaches (XFIT, IFEFFIT) give refinement statistics that appear to show strong, but opposite, preferences for the different conformations. Incorporation of experimental uncertainties into an IFEFFIT‐like analysis yield refinement statistics for the staggered and eclipsed forms of ferrocene which show a far more realistic preference for the eclipsed form which accurately reflects the reliability of the analysis. Moreover, the more strongly founded estimates of the refined parameter uncertainties allow more direct comparison with those obtained by other techniques. These XAFS‐based estimates of the bond distances have accuracies comparable with those obtained using single‐crystal diffraction techniques and are superior in terms of their use in comparisons of experimental and computed structures.  相似文献   
7.
Adsorption-induced chiral resolution of organic molecules is important due to its potential applications in stereo-selective catalysis. We studied the adsorption-induced chiral resolution using a model achiral molecule of 4,4′ biphenyl dicarboxylic acid (BPDA) on Au(111) in 0.1 M perchloric acid (HClO4) by electrochemical scanning tunneling microscopy (EC-STM). Our experimental data showed that the BPDA molecules formed island structures with distinctive preferred orientations at the length scale of the molecular size. The molecules did not show any orientational ordering above the length scale, indicating that chiral resolution was absent in the aqueous environment. Previously, the molecules were found to have chiral resolution on Au(111) in ultra-high vacuum conditions (UHV). We calculated angle-dependent binding energy between the substrate and a BPDA molecule, the intermolecular interactions between the BPDA molecules, and their interactions with water molecules. The calculations suggest that the absence of chiral resolution in the aqueous environment originated from the decrease in the intermolecular energy of the BPDA molecules due to their hydrogen bonds with the surrounding water molecules. The strength of the hydrogen bonding between BPDA molecules was sufficient to overcome the energy barrier for chiral resolution through rotational motion in UHV, but not in an aqueous environment.  相似文献   
8.
Phosphagallenes ( 1 a / 1 b ) featuring double bonds between phosphorus and gallium were synthesized by reaction of (phosphanyl)phosphaketenes with the gallium carbenoid Ga(Nacnac) (Nacnac=HC[C(Me)N(2,6-i-Pr2C6H3)]2). The stability of these species is dependent on the saturation of the phosphanyl moiety. 1 a , which bears an unsaturated phosphanyl ring, rearranges in solution to yield a spirocyclic compound ( 2 ) which contains a P=P bond. The saturated variant 1 b is stable even at elevated temperatures. 1 b behaves as a frustrated Lewis pair capable of activation of H2 and forms a 1:1 adduct with CO2.  相似文献   
9.
10.
Lithium sulfur battery (LSB) offers several advantages such as very high energy density, low-cost, and environmental-friendliness. However, it suffers from serious degradation of its reversible capacity because of the dissolution of reaction intermediates, lithium polysulfides, into the electrolyte. To solve this limitation, there are many studies using graphene-based materials due to their excellent mechanical strength and high conductivity. Compared with graphene, graphene oxide (GO) contains various oxygen functional groups, which enhance the reaction with lithium polysulfides. Here, we investigated the positive effect of using GO mixed with carbon black on the performance of cathode in LSB. We have observed a smaller drop of capacity in GO mixed sulfur cathode. We further demonstrate that the mechanistic origin of reversibility improvement, as confirmed through CV and Raman spectra, can be explained by the stabilization of sulfur in lithium polysulfide intermediates by oxygen functional groups of GO to prevent dissolution. Our findings suggest that the use of graphene oxide-based cathode is a promising route to significantly improve the reversibility of current LSB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号