首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
化学   21篇
数学   2篇
物理学   15篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2013年   8篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   4篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  1995年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有38条查询结果,搜索用时 95 毫秒
1.
The synthesis of a molecule containing hypericin and luciferin moieties joined by a tether is reported. The light-induced (in vitro) antiviral activity as well as the photophysical properties of this new compound are measured and compared with those of the parent compounds, hypericin and pseudohypericin. This tethered molecule exhibits excited-state behavior that is very similar to that of its parent compounds and antiviral activity that is identical, within experimental error, to that of its more closely related parent compound, pseudohypericin. The implications for a photodynamic therapy that is independent of external light sources are discussed.  相似文献   
2.
Detailed gas-phase chemical kinetic models are widely used in combustion research, and many new mechanisms for different fuels and reacting conditions are developed each year. Recent works have highlighted the need for error checking when preparing such models, but a useful community tool to perform such analysis is missing. In this work, we present a simple online tool to screen chemical kinetic mechanisms for bimolecular reactions exceeding collision limits. The tool is implemented on a user-friendly website, cloudflame.kaust.edu.sa, and checks three different classes of bimolecular reactions; (ie, pressure independent, pressure-dependent falloff, and pressure-dependent PLOG). In addition, two other online modules are provided to check thermodynamic properties and transport parameters to help kinetic model developers determine the sources of errors for reactions that are not collision limit compliant. Furthermore, issues related to unphysically fast timescales can remain an issue even if all bimolecular reactions are within collision limits. Therefore, we also present a procedure to screen ultrafast reaction timescales using computational singular perturbation. For demonstration purposes only, three versions of the rigorously developed AramcoMech are screened for collision limit compliance and ultrafast timescales, and recommendations are made for improving the models. Larger models for biodiesel surrogates, tetrahydropyran, and gasoline surrogates are also analyzed for exemplary purposes. Numerical simulations with updated kinetic parameters are presented to show improvements in wall-clock time when resolving ultrafast timescales.  相似文献   
3.
4.
One approach to enhancing the thermal efficiency of combustion systems is to burn fuels at ultra-lean conditions (equivalence ratio below 0.5). It has been recently reported that the auto-ignition of some hydrocarbon fuels, under specific temperature, pressure, and mixture conditions, releases heat in three distinctive stages. The three auto-ignition stages can be divided as a first low-temperature auto-ignition stage with conventional low temperature, and a high-temperature stage separated into two sub-stages. This study presents ignition delay time measurements of n-heptane and methyl-cyclohexane (MCH) mixtures in a flat piston rapid compression machine (RCM) under ultra-lean conditions. It provides experimental evidence of three-stage auto-ignition. This phenomenon of delayed high-temperature heat release is seldom reported in the literature and this is the first time to be reported for these types of fuels. The experiments cover two binary n-heptane/MCH mixtures of 15/85 and 70/30 by volume, pressures of 11 bar and 16 bar, temperature range of 700 to 900 K, and equivalence ratio of 0.4. The RCM optical access was utilized for high-speed chemiluminescence imaging. Detailed chemical kinetic simulations in a homogenous batch reactor with variable volume were conducted to further interrogate the three-stage auto-ignition phenomenon. Chemiluminescence shows that three-stage auto-ignition occurs in the adiabatically compressed end-gas, which indicates that this phenomenon is chemically-driven and is not induced by a thermal stratification in the RCM experiments. The model predicts the features of three-stage auto-ignition, which were experimentally observed at temperatures approximately below 750 K. As expected, significant discrepancies are observed in the ignition delays of experiment and simulation in the negative temperature coefficient (NTC) region. The simulation of the n-heptane/MCH 70/30 mixture shows better agreement with experiments in the Positive Temperature Coefficient (PTC) region compared to the 15/85 mixture.  相似文献   
5.
An experimental and kinetic modeling study of the autoignition of 3-methylheptane, a compound representative of the high molecular weight lightly branched alkanes found in large quantities in conventional and synthetic aviation kerosene and diesel fuels, is reported. Shock tube and rapid compression machine ignition delay time measurements are reported over a wide range of conditions of relevance to combustion engine applications: temperatures from 678 to 1356 K; pressures of 6.5, 10, 20, and 50 atm; and equivalence ratios of 0.5, 1.0, and 2.0. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime characteristic of paraffinic fuels. Comparisons made between the current ignition delay measurements for 3-methylheptane and previous results for n-octane and 2-methylheptane quantifies the influence of a single methyl substitution and its location on the reactivity of alkanes. It is found that the three C8 alkane isomers have indistinguishable high-temperature ignition delay but their ignition delay times deviate in the NTC and low-temperature regimes in correlation with their research octane numbers. The experimental results are compared with the predictions of a proposed kinetic model that includes both high- and low-temperature oxidation chemistry. The model mechanistically explains the differences in reactivity for n-octane, 2-methylheptane, and 3-methylheptane in the NTC through the influence of the methyl substitution on the rates of isomerization reactions in the low-temperature chain branching pathway, that ultimately leads to ketohydroperoxide species, and the competition between low-temperature chain branching and the formation of cyclic ethers, in a chain propagating pathway.  相似文献   
6.
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.  相似文献   
7.
Enols are important species in atmospheric and combustion chemistry. However, their implications in these environments are not well established due to a lack of accurate rate constants and mechanisms to determine their fate. In this work, we investigate the formic acid catalyzed keto-enol tautomerizations converting vinyl alcohol, propen-2-ol and 1-propenol into acetaldehyde, acetone and propanal, respectively. High-level ab initio and multistructural torsional variational transition state theory calculations are performed with small-curvature tunneling corrections to obtain rate constants in the temperature range 200 K-3000 K. Tunneling is shown to be pronounced as a consequence of very narrow adiabatic potential energy curves, and indicates a need to revisit previous calculations. We show the implications of the studied reactions on the fate of enols under combustion relevant conditions by detailed kinetic modeling simulations. The yield of vinyl alcohol predicted by our calculated rate constants may be useful to lessen the underestimation of organic acids concentrations in current atmospheric models.  相似文献   
8.
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.  相似文献   
9.
10.
Polycyclic precursors to 1 and 2 have been prepared via a common intermediate. The key steps include the intramolecular alkylation of a phenol and a selective metal-ammonia reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号