首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   21篇
晶体学   4篇
物理学   5篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2009年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  1997年   1篇
  1972年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
    
XBroad is a public domain program designed for easy determination of basic microstructural information from powder X‐ray diffraction data. Nowadays, preparation of nanomaterials with controlled particle size and shape has been found to be essential for tailoring the desired material properties, so a quick and effective line broadening analysis is an imperative. Although the methods implemented in the program are considered to be `traditional' ones, the authors believe that the program will provide a very fast platform for non‐crystallographers working in the field of materials science, as well as for students learning the basics of size–strain analysis.  相似文献   
3.
4-(2-Aminophenyl)-4-oxobutanoic acid, 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid and glutathionyl-kynurenine have been identified as novel metabolites in normal and cataractous human lenses following total synthesis and comparison with authentic human lens samples. Their structures are consistent with those derived from the major human lens UV filters kynurenine and 3-hydroxykynurenine, and it is proposed that these compounds also play a role as UV filters. These metabolites were isolated in pmol/mg levels (dry mass) in lenses. 4-(2-Amino-3-hydroxyphenyl)-4-oxobutanoic acid and glutathionyl-kynurenine were found to be unstable at physiological pH. Other potential metabolites, glutathionyl-3-hydroxykynurenine, kynurenine yellow and 3-hydroxykynurenine yellow, were not detected in either normal or cataractous lenses.  相似文献   
4.
The review summarizes, compares and analyzes the data available on halogenation reactions in ionic liquid media.  相似文献   
5.
6.
    
(1) Background: Solid phase microextraction (SPME)-Arrow is a new extraction technology recently employed in the analysis of volatiles in food materials. Grape volatile organic compounds (VOC) have a crucial role in the winemaking industry due to their sensory characteristics of wine.; (2) Methods: Box–Behnken experimental design and response surface methodology were used to optimise SPME-Arrow conditions (extraction temperature, incubation time, exposure time, desorption time). Analyzed VOCs were free VOCs directly from grape skins and bound VOCs released from grape skins by acid hydrolysis.; (3) Results: The most significant factors were extraction temperature and exposure time for both free and bound VOCs. For both factors, an increase in their values positively affected the extraction efficiency for almost all classes of VOCs. For free VOCs, the optimum extraction conditions are: extraction temperature 60 °C, incubation time 20 min, exposure time 49 min, and desorption time 7 min, while for the bound VOCs are: extraction temperature 60 °C, incubation time 20 min, exposure time 60 min, desorption time 7 min.; (4) Conclusions: Application of the optimized method provides a powerful tool in the analysis of major classes of volatile organic compounds from grape skins, which can be applied to a large number of samples.  相似文献   
7.
8.
    
A method for preparation of significant amount of hollow rhombohedral calcite nanoparticles, based on carbonation of calcium hydroxide suspension, is described. The mineralogical and morphological analyses of the precipitate confirmed the existence of exclusively stable polymorphic modification, calcite, with the mean particle size of about 100 nm and the diameter of the holes observed at the surfaces that are about 50 nm. The analysis of carbonation kinetics pointed out to a complex mechanism of hollow particles formation at high initial supersaturation, that assumed nucleation of amorphous precursor calcium carbonate phase and its solution mediated transformation into nanosized crystalline calcite. The holes obtained at the calcite surfaces are most probably the imprints remained after the dissolution of amorphous calcium carbonate particles.  相似文献   
9.
10.
    
Significant enhancement of the light emission in Ruddlesden–Popper organic–inorganic halide perovskites is obtained by antisolvent induced spontaneous formation of nanocrystals in an amorphous matrix. This morphology change results in the passivation of defects and significant enhancement of light emission and 16 times higher photoluminescence quantum yield (PLQY), and it is applicable to different spacer cations. The use of trioctylphosphine oxide results in further defect passivation leading to an increase in PLQY (≈2.3 times), the suppression of lower energy emission in low temperature photoluminescence spectra, the dominance of radiative recombination, and the disappearance of thermal quenching of the luminescence. The proposed method offers a reproducible, controllable, and antisolvent‐insensitive alternative to energy landscape engineering to utilize energy funneling phenomenon to achieve bright emission. Instead of facilitating fast energy transfer from lower to higher number of perovskite sheets to prevent nonradiative losses, it is demonstrated that defects can be effectively passivated via morphology control and the use of a passivating agent, so that bright emission can be obtained from single phase nanocrystals embedded in amorphous matrix, resulting in light emitting diodes with a maximum external quantum efficiency of 2.25%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号