首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
化学   6篇
  2020年   2篇
  2015年   1篇
  2011年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Regio‐ and stereoselective distal allylic/benzylic C?H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C?H bonds even in the presence of electronically preferred C?H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4 is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4 works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstituted l ‐proline scaffold.  相似文献   
2.
The first total synthesis of recently isolated diacetylene alcohols oploxyne A, oploxyne B, and their C-10 epimers was accomplished. The structure of natural oploxyne B has been revised. The key steps involved are base-induced double elimination of a carbohydrate-derived β-alkoxy chloride to generate the chiral acetylenic alcohol and Cadiot-Chodkiewicz cross-coupling reaction. The target compounds displayed potent cytotoxicity against neuroblastoma and prostate cancer cell lines.  相似文献   
3.
4.
Regio- and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N-sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site-selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S-NTTL)4 is the most effective chiral catalyst for triazole-derived carbene transformations, whereas Rh2(S-TPPTTL)4 works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ-functionalized allyl silyl ethers with high diastereo- and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4-disubstituted l -proline scaffold.  相似文献   
5.
6.
A novel bridgehead‐substituted aza‐bicyclic framework has been designed and developed in both enantiomeric forms through an asymmetric desymmetrization reaction. Strategic exploitation of the ring strain in the aza‐bicyclic framework has been utilized for the construction of the chiral aza‐quaterenary scaffolds by selective bond fragmentation processes. Furthermore, a strategically designed precursor is employed for selective bond cleavage to initiate a cascade rearrangement for the total synthesis of the 1‐azaspirotricyclic marine alkaloids (+)‐cylindricines C, D, and E, as well as (?)‐lepadiformine A. An oxidation/retro‐aldol/aza‐Michael sequence generated three new chiral centers with the required configuration in one pot.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号