首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
New bis-1,2,3-triazol-H-yl-substituted 2-aryl benzimidazoles VIa-VIp were synthesized from O- and N-bis-propargyl substituted 2-arylbenzimidazoles using “click chemistry.” The newly synthesized compounds were characterized by IR, NMR, and mass spectra. These compounds were screened for their activity against bacterial and fungal organisms.  相似文献   
2.
The necessity to drastically act against mercury pollution has been emphatically addressed by the United Nations. Coal‐fired power plants contribute a great deal to the anthropogenic emissions; therefore, numerous sorbents/catalysts have been developed to remove elemental mercury (Hg0) from flue gases. Among them, ceria (CeO2) has attracted significant interest, due to its reversible Ce3+/Ce4+ redox pair, surface‐bound defects and acid‐base properties. The removal efficiency of Hg0 vapor depends among others, on the flue gas composition and temperature. CeO2 can be incorporated into known materials in such a way that the abatement process can be effective at different operating conditions. Hence, the scope of this account is to discuss the role of CeO2 as a promoter, active phase and support in the design of composite Hg0 sorbents/catalysts. The elucidation of each of these roles would allow the integration of CeO2 advantageous characteristics to such degree, that tailor‐made environmental solution to complex issues can be provided within a broader application scope. Besides, it would offer invaluable input to theoretical calculations that could enable the materials screening and engineering at a low cost and with high accuracy.  相似文献   
3.
Research on Chemical Intermediates - In this work, various transition and rare earth metal ions (M3+; M = Mn3+, Fe3+, La3+, and Pr3+) doped CeO2 solid solutions were prepared by a...  相似文献   
4.
Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3; the former exhibit a low onset overpotential of 380 mV at 10 mA cm−2 and a small Tafel slope of 70.8 mV dec−1. Oxygen vacancy formation is accompanied by mixed Ni2+/Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号